
1 Paths and Proofs

Now that we have looked at the first example of a “classic” Graph Theoretic
problem, we return to more “basics”

We have already defined walks, closed walks, and trails. We now add on to
this:

Definition 1.1. Let G = (V,E) be a graph

1. A path in G is a walk of length at least one that does not use any vertex
more than once.

2. A cycle in G is a closed walk of length(v0, e1, v1, . . . , ek, vk) of length at
least one, so that the only pair of vertices that are the same is (v0, vk).

We have gone over connected graphs and vertices. We also defined connec-
tivity of two vertices u, v. It is not hard to see that connectivity is an equivalence
relation.

Definition 1.2 (Induced Subgraph). If G = (V,E) is a graph, and U ⊆ B,
the subgraph G[U ] with vertex set U and whose edges have both ends in U is
called the subgraph of G induced by U .

Definition 1.3. Let G = (V,E) be a graph. The subgraphs induced by the
equivalence classes of the “connectivity” relation on V are called components.

Fact 1.4. If u and v are distinct vertices in G, then every u, v-walk (i.e. a walk
from u to v) in G contains a u, v-path in G.

Proof. Suppose that G is a walk W that has a repeated vertex. That is, W =
(v0, e1, v1, . . . , ek, vk), where for some distinct i, j, vi = vj . Then we may remove
the segment ei+1, vi+1, . . . , ej , vj to have another perfectly valid walk, as ej+1

must leave vj = vi. We may repeat this process indefinitely. The walk will
either decrease in length by at least one each time, until there is no repeated
vertex left. Therefore, after a finite number of iterations, we will have a path.
This proof can be phrased more concisely using strong induction.

1.1 Cut-Edges and Cut-vertices

Definition 1.5. Let G = (V,E) be a graph. Let G− {v} be the graph resulting
by removing vertex v and all edges incident with v. Let G − {e} be the graph
resulting by removing edge e. If G− {v} or G− {e} has more components than
G, we call v or e a cut-vertex or cut-edge, respectively.

Fact 1.6. A graph G = (V,E) is connected iff for every partition of V = A∪B,
there is an edge E with one end in A and the other in B

Proof. Suppose that G is connected. Let A,B be a partition of V . Then there
must be an edge with one end in A and the other in B, for otherwise there
would be no walk from a ∈ A to b ∈ B. (any such walk (v0, e1, v1, . . . , ek, vk)

1



must have some subsequence (vi, ei+1, vi+1), where vi ∈ A and vi+1 ∈ B, but
there can be no appropriate ei+1.

Now, suppose that G is disconnected. Then there are two vertices u, v ∈ V
that are not connected. Thus, u and v are in two different components C1 and
C2 of G. The vertices V (C1), and V \ V (C1) therefore partition V and there is
no edge from V (C1) to V \V (C1) – else they would not be two different sets.

Theorem 1.7. An edge of a graph is a cut-edge iff it belongs to no cycle

Proof. Suppose first that an edge e of G = (V,E) belongs to a cycle. The only
way in which the number of components could increase is if the component C
containing the ends of e were to become disconnected. So let u, v be in V (C).
We wish to show that there must still be a path from u to v, without using e.
Let W be any arbitrary walk from u to v. If W already does not use e then
we are done. Else, suppose that W uses e = ab. Then ab are adjacent edges
of a cycle, and W = (v0, e1, . . . , a, e, b, . . . , ek, vk). Then we may replace e with
the path around the cycle in the other way (draw a picture to represent this).
Thus, there is still a walk from u to v.

Now, suppose that e = ab’s removal does not increase the number of com-
ponents. Then there is a path from a to b that does not use e. Adding the edge
e to the path after b results in a cycle.

2 Bipartite Graphs

Definition 2.1. A graph G is bipartite if V (G) can be partitioned into two sets
A,B so that every edge has one end in A and another in B.

Fact 2.2. A graph is bipartite iff it has no cycle of odd length

Proof. Suppose first that a graph G has a cycle of odd length. Then one can
see that even partitioning these vertices must necessarily violate the needed
requirements.

For the other direction, use a greedy algorithm.

2


