
1 Introduction

The first section of this course will consider combinatorics, which, loosely speak-
ing is the study of counting sizes of sets. The questions we can ask of this manner
are quire varied – how big are certain sets, how many ways can we arrange el-
ements of certain sets, or choose elements of sets, and so forth. We will later
study generating functions and graph theory, which have numerous applications
in computer science, operations research, and other fields.

2 Sets

Definition 2.1 (Empty Set). The empty set, denoted ∅, is the (only) set con-
taining no elements.

Definition 2.2. Let A and B be sets. Then the intersection of A and B, de-
noted A ∩B, is the set of all objects that are in both A and B. The union of A
and B, denoted A ∪B, is the set of all objects that are in A or in B. A and B
are disjoint if A ∩B is the empty set. We denote the number of elements in A
by |A|.

If we have a collection of sets, A1, . . . , An, we’ll use notation such as
⋃n
i=1Ai

and
⋂n
i=1Ai to mean the union and intersection of all of them, respectively.

Today, we’ll look at ways of stating |
⋃n
i=1Ai| in terms of each of the |Ai|.

3 The Sum Principle

Let’s say we have a collection A1, . . . , An of sets.
We’d like to ask how many objects is in at least one of the sets if we know

how many objects are in each of the sets.
In other words, if we know |A1| , . . . , |An|, we’d like to know |

⋃n
i=1Ai|.

This is not always so easy. If there are objects that is in several of the Ai,
then calculating |

⋃n
i=1Ai| may be more tricky. (We’ll see how to compute this

later).
But, if we know that no object is in more than one of the Ai, then we have

the following:

Fact 3.1 (Sum Principle). If A1, . . . , An is a collection of sets, so that any
two of them are disjoint, then:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑
i=1

|Ai|

This isn’t very surprising The above fact by itself, simply states something
like “If there are 30 big cities in the U.S and 5 in Canada, then there are 35 in
either the U.S. or in Canada”.
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But we can, with a little more cleverness, prove some more interesting state-
ments. A more interesting way of looking at the sum principle is, given a larger
set whose size we wish to determine, how can we break it down into smaller sets
that are mutually disjoint, and whose sizes can we easily compute?

3.1 An example: Electing president and Vice president

Suppose that a club has 20 members. We must elect from the club a president
and vice-president among its members. How many possible choices are there?
Some of you may know the answer is 380, but let us derive the answer from the
sum principle.

We can transform this problem into one of finding the size of a union of
disjoint sets as follows:

Let’s consider the problem as counting the size of the set of all lists of two
members from the club, where the first member of each list is the president, and
the second is the vice-president.

How can we break this into a union of disjoint sets? We sort the lists into
piles so that each pile has all the lists with a given person as president and no
other lists. Then we have 20 such piles, and each pile has 19 lists. So there are
20 · 19 = 380 such arrangements.

4 The Product Principle

In the above example, we applied the sum principle to a large number of sets,
each of which were the same size. This situation occurs frequently enough that
we give it a name, called the product principle.

Fact 4.1 (Product Principle). Suppose that we have a collection of m mu-
tually disjoint sets, each of size n. Then there are mn elements in the union of
these sets.

Proof. A direct application of the sum principle.

In formal notation, we call a list with two elements an ordered pair. Using
the product principle, we have the following:

Theorem 4.2. If the set M has m elements and the set N has n elements,
then there are nm ordered pairs whose first entry is in M and whose second
entry in in N .

Proof. We split the set of all such ordered pairs into sets, classified by their
first element. There will then be m such sets, each with n elements. Using the
product principle, we then see that there are mn such sets.

Definition 4.3. The set of all ordered pairs whose first element in M and whose
second element is in N is the cartesian product of M and N , denoted by M×N .

This notation is appropriate, in the sense that we know from the above
theorem that |M ×N | = |M | · |N |.
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4.1 Lists of more than two elements

Now, let us generalize the product principle. Let’s say that we also need to elect
a treasurer for our club.

Then we have lists of three elements. How many ways can we pick the three
people? We can sort the lists into piles so that each pile consists of all the lists
with a given person as president and as vice president. Then there are 380 piles,
each of which contain 18 lists. So we have 20 · 19 · 18 such lists.

This suggests a more general form of the product principle that we can use
to help us count the number of lists of length k.:

Theorem 4.4 (Generalized Product Principle). Suppose that we have a
set of lists S of length k. Suppose that there are m1 different first elements of
lists in S, and when i− 1 entries for our list have been chosen, there are always
mi possibilities for the next entry. Then S contains

∏k
i=1mk elements.

Proof. A formal proof would use induction, which will be introduced shortly.
Intuitively, we use the product principle. Formal proof left as an exercise.

5 More List Formulas

Definition 5.1. The number n!, called n factorial, is 1 ·2 · . . . ·n =
∏n
i=1 i. We

also define 0! = 1.

Theorem 5.2. The number of ways of listing all the elements of an n-element
set without repeating any elements is n!.

Proof. By the generalized product principle. Also later on we’ll see a more
“direct” proof using induction.

Theorem 5.3. If S has n elements, then the set of all k-element lists of S
(repetition forbidden) is n!/(n− k)!.

Proof. A consequence of the general product principle

6 Using Induction

So far we have used a lot of “further” ideas. To formalize this concept, and to
prove it “really” works, we’ll use induction.

Definition 6.1 (Induction). The principle of mathematical induction works
as follows:

Suppose we have a statement P (n) about the natural number n. To show
that P (n) is true for all n, it is enough to show:

1. P (1) is true. That is, the statement P is true if 1 is used instead of n.

2. Whenever P (k) is true, then P (k + 1) is true also.
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We can more formally prove some of the above theorems by induction

Example: Show that if S has n elements, then there are n! ways of
arranging the members of S:

Proof. By induction on n.
Base Case: If n = 1, then there is only one way of arranging the elements

of S, and 1! = 1.
Inductive Step: Suppose the statement is true for all sets of size k (This is

the inductive hypothesis). Let S be a set of size k + 1.
Consider the set of all arrangements of elements of S. We may break them

up into categories by sorting them by their first element. That is, we place them
into piles of arrangements, where each pile has all the arrangements with a given
object as the first element, and no others. Then by the inductive hypothesis,
each pile is a list of all arrangements of a set of k elements (why?). Therefore
each pile has k! lists, and there are (k + 1) piles, so by the product principle
there are a total of (k + 1)k! = (k + 1)! arrangements.

7 Stirling’s Formula

Here’s an approximation of n!:

Theorem 7.1 (Stirling’s Formula). n! can be approximated by
√

2πn
(
n
e

)n.
In other words, the ratio n!/(

√
2πn

(
n
e

)n) approaches 1 as n approaches infinity.

8 Lists with Repetitions allowed

Fact 8.1. There are nk lists of length k, with repetitions allowed, chosen from
a set of n elements.

Proof. For each position in the list, there are n choices, so the product principle
tess us there are nk lists.

9 Functions and Relations

Intuitively, we can think of a function that takes an input xfrom one set A, and
associates with that input exactly one output f(x) from a set B.

Let’s consider the case where A = {−1, 0, 1, 2}, and B = {1, 2, 3, 4}. Then
the rule f(x) = x + 2 is a rule associating each member of A to a member of
B. And the rule g(x) = x4 − 2z3 − x2 + 3x+ 2, is another rule associating each
member of A to a member of B. Even further, f(x) = g(x) for all x ∈ A.

So we ask ourselves the question: Are f and g really different functions?
For our purposes, we simply classify a function by the associations is creates
and not by the rule itself. In other words, we view f and g as simply a set of
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ordered pairs describing the relation. That is, f = {(−1, 1), (0, 2), (1, 3), (2, 4)},
and g = {(−1, 1), (0, 2), (1, 3), (2, 4)}.

Therefore, f and g are the same set, and therefore are the same function.
Now we will precisely define these concepts.

9.1 Relations

Definition 9.1 (Relation). A relation from A to B is a set of ordered pairs
whose first entries are in A and whose second entries are in B. In other words,
just a subset of A×B. If (a, b) is in a relation, we say that b is related to a or
the relation associates b with a.

Example: Let A = B = {1, 2, 3, 4}, and let S = {(1, 1), (2, 2), (3, 3), (4, 4)}.
Then S is a relation from A to B, and (a, b) ∈ S iff a = b. We can similarly
define a less than or greater than relation.

Definition 9.2 (Function). f is a function from A to B, denoted f : A→ B,
if f is a relation from A to B, so that for each a ∈ A, there is a unique b ∈ B
so that (a, b) ∈ f . We say f(a) = b if (a, b) ∈ f . We call A the domain and B
the codomain.

f and g, as we saw above, are examples of functions.
With this more precise definition, we can now ask counting questions about

functions and relations.

9.2 Counting Functions

Theorem 9.3. If A has k elements and B has n elements, then there are nk

functions from A→ B.

Proof. Use the formula for lists with repetitions allowed. Details left as an
exercise.

Definition 9.4. We denote by BA the set of all functions from A to B. There-
fore,

∣∣BA∣∣ = |B||A|

Example: We have 4 different chairs to paint and five different colors of
paint. In how many ways can we paint the chairs?

Answer: This can be viewed as a function assigning a color to each chair.
By the theorem, then, there are 54 = 625 possibilities.

10 One-to-One functions; Pigeonhole Principle

Definition 10.1. A function f : A → B is one-to-one or an injection iff
f(a1) = f(a2) means that a1 = a2.
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Example: The function f : R→ R defined by f(x) = x3 is one-to-one. But
the function g : R→ R defined by g(x) = x2 is not one-to-one.

In these terms. we can view a list of k elements from a set B (called a
k-element permuation), is a one-to-one function from the set K = {1, . . . , k} to
B.

Suppose that K was larger than B. Then we cannot have a one-to-one
function from K to B – this is called the pigeonhole principle: If we have n
pigeons and less than n holes to put them in, then some hole will have more
than one pigeon.

On the other hand:

Theorem 10.2. If A is a set with k elements, and B a set with n elements, with
k ≤ n, then there are n!

(n−k)! functions from a k-element set A to an n-element
set B.

Proof. This is the same as lists without repetitions allowed.

So, if in our example above, we require that each chair be a different color,
then we have 5 ∗ 4 ∗ 3 ∗ 2 = 120 chairs. But if we instead had five chairs and
four colors, then we can’t get the job done at all.

Applications of the pigeonhole principle can be more subtle:

Example: The powers of two are all even, and the powers of five all end in
five. Show that for any other prime p, among the first five powers of p, one of
these numbers must end in one.

Answer: Since p is not a power of two or a power of five, then for any integer
k, pk cannot end with an even number or five. This means that, there are 5
possible powers of p invovled, and only four possible ending digits. Therefore,
by the pigeonhole principle, among the first five powers of p, there are two, call
them pm and pn, where n > m, so that pm and pn end in the same digit.

Since pn−pm is a multiple of 10, factoring out pm gives pm(pn−m−1) which
is the same number and thus also multiple of 10. Since pm has no multiples of
two or five, we know that pn−m − 1 is a multiple of 10. Thus, pn−m ends in
zero, so pn−m ends in 1.

11 The Extended Pigeonhole Principle

Theorem 11.1 (Extended Pigeonhole Principle). If f is a function from
a set of mk + 1 elements to a set of m elements, then there is a set of at least
k + 1 elements of the domain on which f is constant.

In other words, if we try to stuff mk + 1 pigeons into m holes, then there
must be at least one hole with at least k + 1 pigeons in it.
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11.1 An example – Ramsey Numbers

In a group of n people, either they all know each other, or else there are two
that do not know each other. This isn’t interesting. But did you know that
in any group of six people, there is a group of three, all of whom know each
other, or a group of three, all of whom do not know each other (i.e. they are
all strangers). (We’re assuming that if A knows B, then B knows A, and vice
versa)

Here’s a proof:

Fact 11.2. In any group of six people, there are three mutual acuqaintances, or
three mutual strangers.

Proof. Let’s single out a person A. Then there are five other people, so by the
pigeonhole principle, A must know 3 other people, or must be a stranger with 3
other people. To see this, Apply the Extended pigeonhole principle to the graph
where k = 2 and m = 2 – m represents the two possibilities of “knowing” and
“stranger” – mk + 1 = 5 which is the number of people involved “other” than
A.

Case 1: A knows three other people: Let B,C,D be three other people that
A knows. Then if B, C, and D are all strangers, then this gives us a group of
three mutual strangers. If any two of B, C, and D know each other, then these
two, taken together with A, form a group of three mutual acquaintances.

Case 2: A is a stranger to three other people: This case works almost identi-
cally. If B,C,D are three other people that A is a stranger with, then if B, C,
and D are all acquainted with each other, then this is a group of three mutual
acquaintances. If not, then there are some two that know each other. Therefore,
these two, taken together with A, forms a group of three mutual strangers.

It turns out that no matter which m and n we choose, we can prove that if
we take a large enough group, then no matter which people are in the group, we
can find m mutual acquantinaces or n mutual strangers. We denote by R(m,n)
the smallest number of people that we need to pick to guarantee that there will
be m mutual acquaintances or n mutual strangers.

Note that R(n, 2) = R(2, n) = n. To see that R(n, 2) = n, if we take any
group of n people, either all of them know each other, in which case we have
a group of n people that all know one another, or some two are strangers, in
which case we have a group of 2 people that are all mutual strangers. The proof
that R(2, n) = n works similarly.

Note that to prove that R(m,n) exists for all choices of m,n, with m,n ≥ 2,
we need only to prove that for each m,n, we can find some number, K so that
if we choose K people, we are guaranteed that we will find some group of m
acquaintances or n strangers. We then know that R(m,n) ≤ K, but do not
necessarily know that R(m,n) = K.

11.1.1 Double Induction

To perform this proof, we will use a procedure called Double Induction
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Essentially, here’s how we proceed:
We have a statement about two numbers now instead of 1. Let’s call it

P (m,n). Let’s say we wish to show that P (m,n) is true for all m,n with
m ≥ K1 and n ≥ K2. It is then enough to show that:

1. P (K1, n) is true for all n and P (n,K2) is true for all n.

2. P (m,n) is true whenever P (m− 1, n) and P (m,n− 1) are both true.

We’ll give an example of this, using our Ramsey numbers. This example will
also incorporate an adaptation of the pigeonhole principle.

11.1.2 Proof of Ramsey’s Theorem

Theorem 11.3 (Ramsey’s Theorem). R(m,n) actually exists for all m and
n with m,n ≥ 2. Furthermore, R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

Proof. We know that R(2, n) = R(n, 2) = n for all n. So let us consider the
case R(m,n) where m,n ≥ 3. Suppose that R(m− 1, n) and R(m,n− 1) both
exist. Let k = R(m− 1, n) +R(m,n− 1).

Take any group of k people, and fix a person A from that group. Now, either
A knows R(m− 1, n) people, or is a stranger to R(m,n− 1) other people. This
is an adaptation of the pigeonhole principle.

Case 1: A knows R(m− 1, n) people. Consider a set of R(m− 1, n) people
that A knows. Either n of these are mutual strangers or m − 1 of these are
all mutual acquaintances. If the former is true, then we have our group of n
strangers. If the latter is true then such a group of m− 1 acquaintances, taken
together with A, forms a group of m mutual acquaintances, since we said that
all of these R(m− 1, n) people know A.

Case 2: A is a stranger to R(m,n− 1) people. So take a set of R(m,n− 1)
people that are all strangers with A. Either m of these are mutual acquaintances
or n − 1 of these are mutual strangers. If the former is true then we have our
group of R(m,n − 1) people. If the latter is true then these n − 1 mutual
strangers, taken together with A, gives us our group n mutual strangers.

So, in either case, there are either m mutual acquaintances or n mutual
strangers.

Finding exact values of Ramsey numbers is surprisingly difficult. For in-
stance, it has been proven that R(3, 3) = 6 and R(4, 4) = 18. However, the
exact value of R(5, 5) is not known – we only know that R(5, 5) is between 42
and 55.

To illustrate how difficult a task this is, Paul Erdos, one of the more well-
known mathemeticians, related the following anecdote:

Aliens invade the earth and threaten to obliterate it in a year’s time unless
human beings can find the value R(5, 5). We could marshal the world’s best
minds and fastest computers, and within a year we could probably calculate the
value. If the aliens demanded the Ramsey number R(6, 6), however, we would
have no choice but to launch a preemptive attack.
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