
Solution to Problem 1:

There are two correct answers. Either is acceptable
Answer 1: The edges may be inserted in the order (1, 2), (2, 3), (4, 5), (2, 4).
Answer 2: (2, 3), (1, 2), (4, 5), (2, 4).

Solution to Problem 2:

Answer 1: (5, 4), (4, 2), (2, 3), (1, 2),
or
Answer 2: (5, 4), (4, 2), (1, 2), (2, 3).

Solution to problem 3:

Each line represents the tv after each iteration, and which time the vertex
enters S:

1. t1 =∞, t2 = 15, t3 = 12, t4 = 8. Vertex 4 enters S.

2. t1 = 38, t2 = 15, t3 = 12, t4 = 8. Vertex 3 enters S.

3. t1 = 26, t2 = 15, t3 = 12, t4 = 8. Vertex 2 enters S.

4. t1 = 22, t2 = 15, t3 = 12, t4 = 8. Vertex 1 enters S.

Solution to problem 4

We proceed by induction. Suppose that we have the best distances to a
given set S of vertices. Dijkstra’s algorithm then takes, for each vertex in S,
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each edge leading outside of S to get a new estimate for any vertex v adjacent
to something in S. The cheapest way to get to any vertex outside S must be
the one minimizing tu + cuv, over u ∈ S and v ∈ V \ S. Therefore, when this
v gets entered, we must also have the correct estimate for v. This last step is
where the fact that all edges are nonnegative are crucial.

Solutiomn to problem 5

Any correct solution must have an edge of negative cost. They should trace
the algorithm and demonstrate that their example gives wrong answers when
Dijkstra’s algorithm applies to get full credit. 3 points for a vague explanation.

Solution to problem 6

Let M be a matching saturating all vertices in S. If M is maximum then
we are done. If not, then there is an M -augmenting path. An M -augmenting
path is one that has an odd number of edges, so that the first and last vertex
on the path are not saturated. Thus, the “even”-positioned edges on the path
are in the matching. If we instead switch to the “odd”-positioned edges on the
path, we get a larger matching M∗ that now matches a set of all edges on the
path, without affecting any others. Therefore, the set of vertices saturated by
M∗ contains the set of vertices saturated by M , so S is still saturated by the
larger matching M∗. We continue this procedure.

Solution to problem 7

Let M be a maximal matching, and S be the set of all vertices saturated by
M . Thus S is the set of ends of all edges in M . As we have seen, any cover is
as big as M , and S is twice as big as M . Therefore, S is at most twice the size
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of a minimum cover.
Since M is a maximal matching, there cannot be an edge, neither end of

which is in S – else we could add that edge to get a matching strictly containing
M . Therefore, S must be a vertex cover.
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