
21-228 Homework 9

Due December 4, 2001, at 5 PM

For this HW, all graphs should be simple (i.e. no loops or parallel edges).
The final page contains the algorithms you will need for this assignment. Also,
read section 4.3 in Bogart – especially the secton on breadth-first and depth-first
search.

Problems 1 and 2 use the following matrix. The matrix is a representation
of a road network – there are five cities, and the entry in the ith row and jth
column of the matrix is the cost of building a road from city i to city j. Note
that since the matrix is symmetric, about the main diagonal. we can represent
this data in an undirected graph. It will help to draw the graph. (Do not draw
the edges of weight 0). 

0 3 5 11 9
3 0 3 9 8
5 3 0 ∞ 10
11 9 ∞ 0 7
9 8 10 7 0


1. Use Kruskal’s algorithm to find a minimum spanning tree of the resulting

graph. State clearly the order in which edges are placed into the tree, but no
other proof is needed.

2. Suppose now we use Prim’s algorithm to construct a minimum spanning
tree, and we use city 5 as the initial vertex. Now, in which order are edges
inserted into the minimum spanning tree?

1



3. Consider the following network:
0 10 20 ∞ 17
7 0 5 22 33
14 13 0 15 27
30 ∞ 17 0 10
∞ 15 12 8 0


The entry in the ith row and jth column is the time needed to get from

city i to city j. An entry of ∞ means there is no direct route. Use Dijkstra’s
algorithm to find the shortest route from city 5 to all other cities.

Note that this matrix is not symmetric – therefore you will have to represent
this as a directed graph. Dijkstra’s algorithm works equally well for directed
and undirected graphs. Write down, after each iteration of the while loop, the
values for tv for all vertices v, and the predecessor pv.

Also indicate at which point each vertex enters S.

4. In Dijkstra’s algorithm, S is the set of all vertices to which the shortest
route from the start vertex r is known. When a vertex v gets added to S, how
do we know that we have found a shortest path to v?

5. The example that I gave in class, and the one in problem 3, had edges
with only nonnegative weights. Show how Dijkstra’s algorithm may fail (i.e.
produce paths that are not shortest) if we allow edges with a negative weight.

6. Suppose we have a matching in a graph G that saturates some set of
vertices S ⊆ V . Show that there is a maximum matching in G saturating all
vertices in S. (Hint: Let M be a matching saturating all vertices in S, and use
the augmenting path theorem).

6b) (NOT FOR SUBMISSION). In preparation for problem 7, find a
graph whose minimum size vertex cover is strictly larger than the maximum
matching. In a bipartite graph, we can always get equality, so your example
must be a non-bipartite graph. What is the smallest nonbipartite graph? What
is the size of its smallest vertex cover, and what is the size of its maximum
matching?

7. Here is an example of what we call an approximation algorithm. I may
discuss this in more detail a bit later if there is time. The idea is the following
– we have a problem for which we do not know of an efficient algorithm to solve
the problem exactly. However, we can get an algorithm that gives an answer
reasonably close to the desired value.

The problem of finding a minimum size vertex cover (a set of vertices S ⊆ V
that is incident with all edges in E) is what we call NP -hard. I won’t define
the term here (you don’t need to know what it means to solve the problem),
but it implies that it is unlikely that we will ever find an efficient algorithm to
solve the problem exactly. However, we can find an algorithm that produces a

2



vertex cover that is at most twice the smallest one. Show how finding a maximal
(we don’t need a maximum matching!) matching leads immediately to a vertex
cover that is at most twice the size of a minimum vertex cover. Note that we
didn’t even need to know the exact size of the minimum vertex cover to prove
that the cover we created was at most twice as big!

8. Extra Credit: Those of you interested in extra credit can come see me
about trying to derive the best known approximation algorithm for the Metric
Traveling Salesman Problem. The algorithm itself is not too complicated, but
is tricky both to come up with and prove.

3



Assume that G = (V,E) is the graph we are running each algorithm on:
Kruskal’s Algorithm:

1. Initialize: Set G∗ = (V, ∅).

2. While G∗ is not connected

(a) Take the smallest edge e in E that has not yet been considered.

(b) If adding e to G∗ forms a cycle, discard e. Else, add e to G∗

3. End While

4. End Algorithm

Prim’s Algorithm for Minimum Spanning Tree, starting at root r Recall V \S
is the set of all vertices in V that are not in S.

1. Initialize: Set S = {r}. Set G∗ = (S, ∅).

2. While S 6= V .

(a) Pick the smallest edge (call it uv) from S to V \S, where u ∈ S, and
v ∈ V \ S. Add v to S, and the edge uv to G∗ as well.

3. End While

4. End Algorithm

Dijkstra’s Algorithm for shortest path from r to all other vertices v. Re-
member that cuv is the distance along edge u and v. When using this on a
directed graph, remember that uv is the edge that goes “from” u to v.

Here, pv is the “predecessor” of v on the shortest path from r to v.

1. Initialize: Set S = {r}, tr = 0, tv = ∞ for v 6= r. Set pr = r, and set
pv = −1 (i.e. a dummy value meaning that we do not have an estimate
for the predecessor yet).

2. While S 6= V

(a) For Each edge uv with u ∈ S, v ∈ V \ S. (Really, we only need to
check the edges leaving the newest member of S).

i. If tv > tu + cuv
A. Set tv = tu + cuv. Set pv = u.

ii. End If

(b) End For

(c) Pick the v ∈ V \ S with the smallest value of tv, and add v to S.

3. End While

4. End Algorithm

4


