Concepts of Math: Recitation 6

September 16, 2015

Basic Proofs

- 1. Prove that $\sqrt[3]{2}$ is not rational. This will be an example of proof by contradiction.
- 2. Prove that, $\forall x, y \in \mathbb{R}$, if x + y = 7 and xy = 10, then $x^2 + y^2 = 29$. This will be an example of direct proof.
- 3. Prove that, $\forall n \in \mathbb{N}$, if $2^n 1$ is not divisible by 7, then n is not multiple of 3. This will be an example of proof by contrapositive.
- 4. Prove that there is no positive rational number that is smaller than all other positive rational numbers.

Induction

- 1. Use induction to prove that for all natural numbers n, $7 \mid (8^n 1)$ (in other words, $8^n 1$ is divisible by 7).
- 2. Use induction to prove that for all natural numbers n, $2^n > n$.