Concepts of Math: Recitation 4

September 9, 2015

Quantifiers

- 1. Find the truth values of the following statements. Explain your answers.
 - (a) There exists an integer x such that $x^3 + 1 = 0$.
 - (b) For all real numbers x and y, $x^2 + y^3 \ge 0$.
- 2. Find all the real numbers a such that the following statement is true. "For all $x \in \mathbb{R}$, there is a unique y such that $x^4y + ay + x = 0$."
- 3. Find the truth value of the following statement and explain your answer. "If $n \in \mathbb{N}$ and $n^2 + (n+1)^2 = (n+2)^2$, then n = 3."
- 4. Negate the following statement about the sequence a_1, a_2, a_3, \ldots For every $\epsilon > 0$, there exists a positive integer N, such that, for all $n \ge N$, $|a_n - L| < \epsilon$.
- 5. (a) Show that $\forall x P(x) \lor \forall x Q(x)$ is equivalent to $\forall x \forall y (P(x) \lor Q(y))$ (b) Show that $\forall x P(x) \land \exists x Q(x)$ is equivalent to $\forall x \exists y (P(x) \land Q(y))$
- 6. Rewrite each of these statements so that negations appear only within predicates.
 - (a) $\neg \forall x \exists y P(x, y)$
 - (b) $\neg \forall x \forall y (P(x,y) \lor Q(x,y))$
 - (c) $\neg(\exists x \exists y \neg P(x, y) \land \forall x \forall y Q(x, y))$
 - (d) $\neg \forall x (\exists y \forall z P(x, y, z) \land \exists z \forall y P(x, y, z))$

Introduction to Sets

- 1. Define the cardinality of a set as the number of elements in it. What is the cardinality of each of these sets?
 - (a) \emptyset
 - (b) $\{\emptyset, \{a\}\}$
 - (c) $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}$

- 2. In class I explained that $a \in A$ means that a is an element of A. Please define subsets $(A \subseteq B)$ and equality of sets (A = B). Find two sets A and B such that $A \in B$ and $A \subseteq B$.
- 3. Decide whether the satements below are true or false.
 - (a) $1 \in \{\{1\}, 2\}$
 - (b) $\{1\} \in \{\{1\}, 2\}$
 - (c) $\{1\} \subseteq \{\{1\}, 2\}$
 - (d) $\{\{1\}\} \in \{\{1\}, 2\}$