Concepts of Math: Recitation 12

October 7, 2015

Bijective Functions and Cardinality

- 1. Let $f : A \to B$ be a bijection, where A and B are subsets of \mathbb{R} . Prove that, if f is increasing on A, then f^{-1} is increasing on B.
- 2. Count the bijections from A to B, given that |A| = |B| = n.
- 3. Let A and B be two countable sets. Prove that $A \cup B$ and $A \times B$ are countable.
- 4. Prove that in the *xy*-plane there is a circle centered at the origin that passes through no points whose coordinates are both rational numbers.
- 5. Let I denote the closed unit interval [0, 1] and $I \times I$ denote the closed unit square. Prove that $|I| = |I \times I|$.
- 6. Consider functions $f : A \to B$ and $g : B \to C$. Answer each question below by providing a proof or a counterexample.
 - (a) If f(g(y)) = y for all $y \in B$, does it follow that f is a bijection?
 - (b) If g(f(x)) = x for all $x \in A$, does it follow that f(g(y)) = y for all $y \in B$?
- 7. Verify that

$$f(x) = \frac{2x - 1}{2x(1 - x)}$$

defines a bijection from (0, 1) to \mathbb{R} . In the proof that f is surjective, use the quadratic formula.

8. Consider $f: A \to A$. Prove that if $f \circ f$ is injective, then f is injective.