Concepts of Math: Recitation 11

October 5, 2015

Bijective Functions

- 1. Let A and B be two finite sets. Let $f : A \to B$ be a function. Show that if f is surjective, then $|A| \ge |B|$. Show that if f is injective, then $|A| \le |B|$. Conclude that, if f is bijective, then |A| = |B|.
- 2. Show that f from $[2,\infty)$ to $[-3,\infty)$ defined by $f(x) = x^2 4x + 1$ is a bijection.
- 3. Show that f from \mathbb{R}^2 to \mathbb{R}^2 defined by f(x,y) = (x+y, x+y) is NOT a bijection.
- 4. Show that f from \mathbb{R}^2 to \mathbb{R}^2 defined by f(x, y) = (x + y, x y) is a bijection.
- 5. For $n \in \mathbb{N}$ we define $[n] = \{1, 2, 3, ..., n\}$. By convention $[0] = \emptyset$. Consider the function $f : \mathbb{N} \to \mathbb{N}$ defined by f(x) = 2x 1. For $n \in \mathbb{N}$ find the set f([n]).
- 6. Let **A** be the set of all subsets of [n] with an even number of elements and **B** be the set of all subsets of [n] with an odd number of elements. Find a bijection from **A** to **B**. Note that when n is odd, $f(S) = S^c$ works. When n is even, some creativity is necessary. Maybe they can play with it for a while to get an answer to verify.
- 7. If there is time left, answer questions about the homework.