18-461/661: Introduction to ML for Engineers

Probability and Linear Algebra Review

Spring 2020

ECE – Carnegie Mellon University
Registration

- Course is currently full and we can’t increase class size
- Expect several students will drop the course
- Course will be offered again in Fall 2020

Direct all waitlist-related questions to Megan Oliver (Pittsburgh) or Brittany Walker (SV):
mvoliver@andrew.cmu.edu and bmw2@andrew.cmu.edu

- If you’re not registered, we encourage you to stay patient
- You are welcome to keep attending the lectures until the waitlists are sorted out
Announcements

- Graded quizzes will be posted on Gradescope – Entry Code 9NEDVR
- HW1 will be posted on Fri Jan 17, due on Mon Jan 27
- Recitation this Friday will go through the math quiz
- No class on Monday due to the MLK Day holiday
1. Recap: What is Machine Learning?

2. Probability Review

3. A Simple Learning Problem: MLE/MAP Estimation

4. Linear Algebra Review
Recap: What is Machine Learning?
• **Machine learning is:** the study of methods that *improve their performance on some task with experience*
Goal: Choose the Right ML Method for a Given Task

- **data**
- **feature extraction**
- **model & parameters**
- **optimization**
- **evaluation**
- **ML method**
- **intelligence**
Task 1: Regression

How much should you sell your house for?

input: houses & features
learn: $x \rightarrow y$ relationship
predict: y (continuous)

Course Covers: Feature Scaling, Linear/Ridge Regression, Loss Function, SGD, Regularization, Cross Validation
Task 2: Classification

Cat or dog?

input: cats and dogs
learn: $x \rightarrow y$ relationship
predict: y (categorical)

Course Covers: Naive Bayes, Logistic Regression, SVMs, Neural Nets, Decision Trees, Boosting
Task 3: Clustering

How to segment an image?

input: raw pixels \(\{x\} \)

separate: \(\{x\} \) into sets

output: cluster labels \(\{z\} \)

Course Covers: Nearest Neighbors, K-means clustering
Task 4: Embedding

How to reduce size of dataset?

input: large dataset \{x\}
find: sources of variation
return: representation \{z\}

Course Covers: Dimensionality Reduction, PCA
1. Recap: What is Machine Learning?

2. Probability Review

3. A Simple Learning Problem: MLE/MAP Estimation

4. Linear Algebra Review
Probability Review
Probability Terminology

Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets</td>
<td>F, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
</tbody>
</table>

Probability Space

A triple (Ω, F, P)

Examples

- **Rolling a fair die**
 - Ω: \{1, 2, 3, 4, 5, 6\}
 - F = \{\{1\}, \{2\}, ..., \{1, 2\}, ..., \{1, 2, 3, 4, 5, 6\}, \{\}\}
 - $P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2}$

- **Tossing a fair coin twice**
 - Ω: \{HH, HT, TH, TT\}
 - F = \{\{HH\}, \{HT\}, ..., \{HH, HT\}, ..., \{HH, HT, TH, TT\}, \{\}\}
 - $P(\text{first flip is heads}) = P(\{HH, HT\}, \{HT\}) = \frac{1}{2}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
</tbody>
</table>
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
</tbody>
</table>
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
</tbody>
</table>
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **Rolling a fair die**
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - F: $\{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{}\}$
 - P(rolling an odd number) = $\frac{1}{2}$

- **Tossing a fair coin twice**
 - Ω: $\{HH, HT, TH, TT\}$
 - F: $\{\{HH\}, \{HT\}, \ldots, \{HH, HT\}, \ldots, \{HH, HT, TH, TT\}, \{}\}$
 - P(first flip is heads) = $\frac{1}{2}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>𝒇, 𝐸</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>𝑃, 𝜋</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, 𝒇, 𝑃)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: \{1, 2, 3, 4, 5, 6\}
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:
- Rolling a fair die
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>F, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, F, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: \{1, 2, 3, 4, 5, 6\}
 - \(\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \emptyset\}\)
 - \(P(\text{rolling an odd number})\)
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, \mathcal{E}</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
 - $P(\text{rolling an odd number})$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
 - $P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>𝐹, 𝐸</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>𝑃, 𝜖</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, 𝐹, 𝑃)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: \{1, 2, 3, 4, 5, 6\}
 - \(\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}\)
 - \(P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2}\)

- Tossing a fair coin twice
 - Ω: \{HH, HT, TH, TT\}
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **Rolling a fair die**

 - Ω: $\{1, 2, 3, 4, 5, 6\}$

 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$

 - $P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2}$

- **Tossing a fair coin twice**

 - Ω: $\{HH, HT, TH, TT\}$

 - $\mathcal{F} = \{\{HH\}, \{HT\}, \ldots, \{HH, HT\}, \ldots, \{HH, HT, TH, TT\}, \{\}\}$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
 - $P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2}$

- Tossing a fair coin twice
 - Ω: $\{HH, HT, TH, TT\}$
 - $\mathcal{F} = \{\{HH\}, \{HT\}, \ldots, \{HH, HT\}, \ldots, \{HH, HT, TH, TT\}, \{\}\}$
 - $P(\text{first flip is heads})$
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>(\Omega, S)</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of (\Omega))</td>
<td>(\mathcal{F}, E)</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>(P, \pi)</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>((\Omega, \mathcal{F}, P))</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- Rolling a fair die
 - \(\Omega: \{1, 2, 3, 4, 5, 6\} \)
 - \(\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\} \)
 - \(P(\text{rolling an odd number}) = P(\{1, 3, 5\}) = \frac{1}{2} \)

- Tossing a fair coin twice
 - \(\Omega: \{HH, HT, TH, TT\} \)
 - \(\mathcal{F} = \{\{HH\}, \{HT\}, \ldots, \{HH, HT\}, \ldots, \{HH, HT, TH, TT\}, \{\}\} \)
 - \(P(\text{first flip is heads}) \)
Probability Terminology

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Space</td>
<td>set</td>
<td>Ω, S</td>
<td>possible outcomes</td>
</tr>
<tr>
<td>Event Space</td>
<td>a set of subsets (of Ω)</td>
<td>\mathcal{F}, E</td>
<td>the events that have probabilities</td>
</tr>
<tr>
<td>Probability Measure</td>
<td>measure</td>
<td>P, π</td>
<td>assigns probabilities to events</td>
</tr>
<tr>
<td>Probability Space</td>
<td>a triple</td>
<td>(Ω, \mathcal{F}, P)</td>
<td></td>
</tr>
</tbody>
</table>

Examples:

- **Rolling a fair die**
 - Ω: $\{1, 2, 3, 4, 5, 6\}$
 - $\mathcal{F} = \{\{1\}, \{2\}, \ldots, \{1, 2\}, \ldots, \{1, 2, 3\}, \ldots, \{1, 2, 3, 4, 5, 6\}, \{\}\}$
 - P(rolling an odd number) = $P(\{1, 3, 5\}) = \frac{1}{2}$

- **Tossing a fair coin twice**
 - Ω: $\{HH, HT, TH, TT\}$
 - $\mathcal{F} = \{\{HH\}, \{HT\}, \ldots, \{HH, HT\}, \ldots, \{HH, HT, TH, TT\}, \{\}\}$
 - P(first flip is heads) = $P(\{HH\}, \{HT\}) = \frac{1}{2}$
Axioms of Probability

- \(0 \leq P(A) \leq 1 \)
- \(P(\Omega) = 1, \; P(\emptyset) = 0 \)
- \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)

Question: For two tosses of a fair coin, suppose \(A \) is the event that at least one is H, and \(B \) is the event that there is exactly one T. Then what is \(P(A \cup B) \)?

\[
P(A \cup B) = 0.75 + 0.5 - 0.5 = 0.75
\]
Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\Omega) = 1, \ P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

Question: For two tosses of a fair coin, suppose A is the event that at least one is H, and B is the event that there is exactly one T. Then what is $P(A \cup B)$?
Axioms of Probability

- $0 \leq P(A) \leq 1$
- $P(\Omega) = 1$, $P(\emptyset) = 0$
- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
- **Question:** For two tosses of a fair coin, suppose A is the event that at least one is H, and B is the event that there is exactly one T. Then what is $P(A \cup B)$?

$$P(A \cup B) = 0.75 + 0.5 - 0.5 = 0.75$$
For events $A, B \in \mathcal{F}$, the conditional probability of A given B is given by:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$
Conditional Probability

- For events $A, B \in \mathcal{F}$, the conditional probability of A given B is given by:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

- **Question:** For two tosses of a fair coin, what is the probability of at least one T, given that the event TT did not occur?
For events $A, B \in \mathcal{F}$, the **conditional probability** of A given B is given by:

$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$

Question: For two tosses of a fair coin, what is the probability of at least one T, given that the event TT did not occur?
For events $A, B \in \mathcal{F}$, the conditional probability of A given B is given by:

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

Question: For two tosses of a fair coin, what is the probability of at least one T, given that the event TT did not occur? ANS: $2/3$

Bayes rule:

$$P(B \mid A)P(A) = P(A \cap B) = P(A \mid B)P(B)$$

$$\Rightarrow P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$
Some Other Concepts that You Should Know

- Discrete and Continuous Random Variables
- PMF, PDF, CDF
- Expectation and Variance
- Entropy
A Simple Learning Problem: MLE/MAP Estimation
Dogecoin

- Scenario: You find a coin on the ground.

- You ask yourself: Is this a fair or biased coin? What is the probability that I will flip a heads?
• You flip the coin 10 times . . .
• You flip the coin 10 times . . .
• It comes up as ’H’ 8 times and ’T’ 2 times
• You flip the coin 10 times . . .
• It comes up as 'H' 8 times and 'T' 2 times
• Can we learn the bias of the coin from this data?
Two approaches that we will discuss today:

- Maximum likelihood Estimation (MLE)
- Maximum a posteriori Estimation (MAP)
Maximum Likelihood Estimation (MLE)

- **Data**: Observed set D of n_H heads and n_T tails

Thus, the likelihood of observing sequence D is $P(D|\theta) = \theta^{n_H} (1-\theta)^{n_T}$.
Maximum Likelihood Estimation (MLE)

- **Data:** Observed set D of n_H heads and n_T tails
- **Model:** Each flip follows a Bernoulli distribution

$$P(H) = \theta, \ P(T) = 1 - \theta, \ \theta \in [0, 1]$$
Maximum Likelihood Estimation (MLE)

- **Data**: Observed set D of n_H heads and n_T tails
- **Model**: Each flip follows a Bernoulli distribution

$$P(H) = \theta, \ P(T) = 1 - \theta, \ \theta \in [0, 1]$$
Maximum Likelihood Estimation (MLE)

- **Data:** Observed set D of n_H heads and n_T tails
- **Model:** Each flip follows a Bernoulli distribution

$$P(H) = \theta, \quad P(T) = 1 - \theta, \quad \theta \in [0, 1]$$

Thus, the likelihood of observing sequence D is
• **Data**: Observed set D of n_H heads and n_T tails

• **Model**: Each flip follows a Bernoulli distribution

$$ P(H) = \theta, \ P(T) = 1 - \theta, \ \theta \in [0, 1] $$

Thus, the likelihood of observing sequence D is

$$ P(D \mid \theta) = \theta^{n_H}(1 - \theta)^{n_T} $$
Maximum Likelihood Estimation (MLE)

- **Data**: Observed set D of n_H heads and n_T tails
- **Model**: Each flip follows a Bernoulli distribution

\[P(H) = \theta, \ P(T) = 1 - \theta, \ \theta \in [0, 1] \]

Thus, the likelihood of observing sequence D is

\[P(D \mid \theta) = \theta^{n_H} (1 - \theta)^{n_T} \]

- **Question**: Given this model and the data we’ve observed, can we calculate an estimate of θ?
Maximum Likelihood Estimation (MLE)

- **Data**: Observed set D of n_H heads and n_T tails
- **Model**: Each flip follows a Bernoulli distribution

 $$P(H) = \theta, \ P(T) = 1 - \theta, \ \theta \in [0, 1]$$

 Thus, the likelihood of observing sequence D is

 $$P(D \mid \theta) = \theta^{n_H}(1 - \theta)^{n_T}$$

- **Question**: Given this model and the data we’ve observed, can we calculate an estimate of θ?
- **MLE**: Choose θ that maximizes the likelihood of the observed data

 $$\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)$$
• \(\log(x) \) is a monotone increasing function; will not affect the \(\arg \max \)

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log (\theta^nH(1 - \theta)^nT)
\]
• log(x) is a monotone increasing function; will not affect the arg max

\[\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta) \]

\[= \arg \max_{\theta} \log P(D \mid \theta) \]

\[= \arg \max_{\theta} \log (\theta^{n_H} (1 - \theta)^{n_T}) \]

\[= \arg \max_{\theta} \underbrace{n_H \log(\theta) + n_T \log(1 - \theta)}_{\text{concave}} \]
How to solve?

- \(\log(x) \) is a monotone increasing function; will not affect the arg max

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log (\theta^{n_H}(1 - \theta)^{n_T})
\]

\[
= \arg \max_{\theta} \underbrace{n_H \log(\theta) + n_T \log(1 - \theta)}_{\text{concave}}
\]
How to solve?

- \(\log(x) \) is a monotone increasing function; will not affect the arg max

\[
\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log (\theta^{n_H}(1 - \theta)^{n_T})
\]

\[
= \arg \max_{\theta} \left(n_H \log(\theta) + n_T \log(1 - \theta) \right)
\]

- Take derivative \(\frac{\partial}{\partial \theta} \log P(D \mid \theta) \) and set equal to zero
How to solve?

- \(\log(x) \) is a monotone increasing function; will not affect the arg max

\[
\hat{\theta}_{MLE} = \arg\max_{\theta} P(D \mid \theta)
\]

\[
= \arg\max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg\max_{\theta} \log (\theta^{n_H} (1 - \theta)^{n_T})
\]

\[
= \arg\max_{\theta} n_H \log(\theta) + n_T \log(1 - \theta)
\]

- Take derivative \(\frac{\partial}{\partial \theta} \log P(D \mid \theta) \) and set equal to zero

\[
0 = \frac{\partial}{\partial \theta} n_H \log(\theta) + n_T \log(1 - \theta)
\]
How to solve?

- \(\log(x) \) is a monotone increasing function; will not affect the arg max

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log (\theta^{n_H} (1 - \theta)^{n_T})
\]

\[
= \arg \max_{\theta} \frac{n_H \log(\theta) + n_T \log(1 - \theta)}{\text{concave}}
\]

- Take derivative \(\frac{\partial}{\partial \theta} \log P(D \mid \theta) \) and set equal to zero

\[
0 = \frac{\partial}{\partial \theta} n_H \log(\theta) + n_T \log(1 - \theta)
\]

\[
= \frac{n_H}{\theta} - \frac{n_T}{1 - \theta}
\]
How to solve?

• \(\log(x) \) is a monotone increasing function; will not affect the arg max

\[
\hat{\theta}_{MLE} = \arg \max_{\theta} P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log P(D \mid \theta)
\]

\[
= \arg \max_{\theta} \log (\theta^n (1 - \theta)^t)
\]

\[
= \arg \max_{\theta} \underbrace{n_H \log(\theta) + n_T \log(1 - \theta)}_{\text{concave}}
\]

• Take derivative \(\frac{\partial}{\partial \theta} \log P(D \mid \theta) \) and set equal to zero

\[
0 = \frac{\partial}{\partial \theta} n_H \log(\theta) + n_T \log(1 - \theta)
\]

\[
= \frac{n_H}{\theta} - \frac{n_T}{1 - \theta}
\]

\[
\implies \hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T}
\]
Going back to our scenario

- You flip the coin 10 times . . .
Going back to our scenario

- You flip the coin 10 times . . .
- It comes up as 'H' 8 times and 'T' 2 times
Going back to our scenario

- You flip the coin 10 times . . .
- It comes up as 'H' 8 times and 'T' 2 times
- **Can we learn the bias \(\theta \) of the coin from this data?**
Going back to our scenario

- You flip the coin 10 times . . .
- It comes up as 'H' 8 times and 'T' 2 times
- Can we learn the bias θ of the coin from this data?
• You flip the coin 10 times . . .
• It comes up as 'H' 8 times and 'T' 2 times

Can we learn the bias θ of the coin from this data?

$$\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T} = 0.8$$
• You flip the coin 10 times . . .
• It comes up as 'H' 8 times and 'T' 2 times
• Can we learn the bias θ of the coin from this data?

$$\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T} = 0.8$$

Here, we are trusting the data completely. But there could be too little data or noisy data.
What about prior knowledge?

- We believe the coin is *supposed* to be close to 50-50
What about prior knowledge?

- We believe the coin is *supposed* to be close to 50-50
- Rather than completely “trusting” the data as-is, we want to use the data to update our prior beliefs
What about prior knowledge?

- We believe the coin is *supposed* to be close to 50-50
- Rather than completely “trusting” the data as-is, we want to use the data to update our prior beliefs
What about prior knowledge?

- We believe the coin is *supposed* to be close to 50-50
- Rather than completely “trusting” the data as-is, we want to use the data to update our prior beliefs
Bayesian Learning

- How to incorporate prior knowledge?

\[P(\theta | D) = \frac{P(D | \theta) P(\theta)}{P(D)} \]

Or, equivalently:

\[P(\theta | D) \propto P(D | \theta) P(\theta) \]
Bayesian Learning

• How to incorporate prior knowledge?
• Use Bayes’ Rule:

\[P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} \]
Bayesian Learning

- How to incorporate prior knowledge?
- Use Bayes’ Rule:

\[P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} \]

- Or, equivalently:

\[P(\theta \mid D) \propto P(D \mid \theta)P(\theta) \]

posterior \hspace{1cm} likelihood \hspace{1cm} prior
Bayesian Learning

• How to incorporate prior knowledge?
• Use Bayes’ Rule:

\[P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)} \]

• Or, equivalently:

\[P(\theta \mid D) \propto P(D \mid \theta)P(\theta) \]

posterior \hspace{1cm} likelihood \hspace{1cm} prior
Bayesian Learning

• How to incorporate prior knowledge?
• Use Bayes’ Rule:

\[
P(\theta \mid D) = \frac{P(D \mid \theta)P(\theta)}{P(D)}
\]

• Or, equivalently:

\[
P(\theta \mid D) \propto P(D \mid \theta)P(\theta)
\]

posterior \hspace{1cm} \text{likelihood} \hspace{1cm} \text{prior}
\[\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(D \mid \theta) P(\theta) \]

- Recall that \(P(D \mid \theta) = \theta^{n_H} (1 - \theta)^{n_T} \)
\[\hat{\theta}_{MAP} = \arg \max_{\theta} P(D \mid \theta) P(\theta) \]

- Recall that \(P(D \mid \theta) = \theta^n (1 - \theta)^T \)
- How should we set the prior, \(P(\theta) \)?
\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(D \mid \theta) P(\theta)
\]

- Recall that \(P(D \mid \theta) = \theta^nH(1 - \theta)^nT\)
- How should we set the prior, \(P(\theta)\)?
- Common choice for a binomial likelihood is to use the Beta distribution, \(\theta \sim \text{Beta}(\alpha, \beta)\):

\[
P(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1}(1 - \theta)^{\beta-1}, \text{where } B(\alpha, \beta) = \int_0^1 \theta^{\alpha-1}(1 - \theta)^{\beta-1} d\theta
\]
\[\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(D \mid \theta) P(\theta) \]

- Recall that \(P(D \mid \theta) = \theta^{n_H} (1 - \theta)^{n_T} \)
- How should we set the prior, \(P(\theta) \)?
- Common choice for a binomial likelihood is to use the Beta distribution, \(\theta \sim \text{Beta}(\alpha, \beta) \):

\[
P(\theta) = \frac{1}{B(\alpha, \beta)} \theta^{\alpha-1} (1 - \theta)^{\beta-1}, \text{ where } B(\alpha, \beta) = \int_0^1 \theta^{\alpha-1} (1 - \theta)^{\beta-1} d\theta
\]

- Interpretation: \(\alpha = \) number of expected heads, \(\beta = \) number of expected tails. Larger value of \(\alpha + \beta \) denotes more confidence (and smaller variance).
Beta Distribution

\(\frac{\alpha}{\beta} \) controls left/right bias, \(\alpha + \beta \) controls height of peak
A benefit of using the *Beta* distribution as a prior is that the posterior will also be a *Beta* distribution:

\[\hat{\theta}_{MAP} = \arg \max_{\theta} P(D | \theta) P(\theta) \]
A benefit of using the *Beta* distribution as a prior is that the posterior will also be a *Beta* distribution:

\[\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(D \mid \theta)P(\theta) \]

\[= \arg \max_{\theta} \theta^{\alpha + n_H - 1}(1 - \theta)^{\beta + n_T - 1} \]
A benefit of using the *Beta* distribution as a prior is that the posterior will also be a *Beta* distribution:

\[
\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(D \mid \theta) P(\theta) = \arg \max_{\theta} \theta^{\alpha + n_H - 1} (1 - \theta)^{\beta + n_T - 1} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2}
\]
A benefit of using the *Beta* distribution as a prior is that the posterior will also be a *Beta* distribution:

\[
\hat{\theta}_{MAP} = \arg \max_{\theta} P(D | \theta)P(\theta)
\]

\[
= \arg \max_{\theta} \theta^{\alpha+n_H-1}(1-\theta)^{\beta+n_T-1}
\]

\[
= \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2}
\]

Note that as \(n_H + n_T \to \infty \), the effect of the prior disappears and we recover the MLE estimate.
Putting it all together

\[\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T} \]

\[\hat{\theta}_{MAP} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \]

Suppose \(\theta^* = 0.5 \) and we observe: \(D = \{H, H, T, T, T, T\} \).

Scenario 1: We assume \(\theta \sim \text{Beta}(4, 4) \). Which is more accurate – \(\hat{\theta}_{MLE} \) or \(\hat{\theta}_{MAP} \)?

\(\hat{\theta}_{MAP} = \frac{5}{12}, \hat{\theta}_{MLE} = \frac{1}{3} \)

Scenario 2: We assume \(\theta \sim \text{Beta}(1, 7) \). Which is more accurate – \(\hat{\theta}_{MLE} \) or \(\hat{\theta}_{MAP} \)?

\(\hat{\theta}_{MAP} = \frac{1}{6}, \hat{\theta}_{MLE} = \frac{1}{3} \)
Putting it all together

\[
\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T}
\]
\[
\hat{\theta}_{MAP} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2}
\]

- Suppose \(\theta^* := 0.5\) and we observe: \(D = \{H, H, T, T, T, T\}\)
Putting it all together

\[\hat{\theta}_{\text{MLE}} = \frac{n_H}{n_H + n_T} \]
\[\hat{\theta}_{\text{MAP}} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \]

- Suppose \(\theta^* := 0.5 \) and we observe: \(D = \{H, H, T, T, T, T\} \)
- Scenario 1: We assume \(\theta \sim \text{Beta}(4, 4) \). Which is more accurate – \(\theta_{\text{MLE}} \) or \(\theta_{\text{MAP}} \)?
Putting it all together

\[
\hat{\theta}_{MLE} = \frac{n_H}{n_H + n_T}
\]

\[
\hat{\theta}_{MAP} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2}
\]

- Suppose \(\theta^* := 0.5 \) and we observe: \(D = \{H, H, T, T, T, T\} \)
- Scenario 1: We assume \(\theta \sim Beta(4, 4) \). Which is more accurate – \(\theta_{MLE} \) or \(\theta_{MAP} \)?
 - \(\theta_{MAP} = 5/12, \theta_{MLE} = 1/3 \)
- Scenario 2: We assume \(\theta \sim Beta(1, 7) \). Which is more accurate – \(\theta_{MLE} \) or \(\theta_{MAP} \)?
 - \(\theta_{MAP} = 1/6, \theta_{MLE} = 1/3 \)
Putting it all together

\[\hat{\theta}_{\text{MLE}} = \frac{n_H}{n_H + n_T} \]
\[\hat{\theta}_{\text{MAP}} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2} \]

- Suppose \(\theta^* := 0.5 \) and we observe: \(D = \{H, H, T, T, T, T\} \)
- Scenario 1: We assume \(\theta \sim \text{Beta}(4, 4) \). Which is more accurate – \(\theta_{\text{MLE}} \) or \(\theta_{\text{MAP}} \)?
 - \(\theta_{\text{MAP}} = 5/12, \theta_{\text{MLE}} = 1/3 \)
- Scenario 2: We assume \(\theta \sim \text{Beta}(1, 7) \). Which is more accurate – \(\theta_{\text{MLE}} \) or \(\theta_{\text{MAP}} \)?
Putting it all together

\[
\hat{\theta}_{\text{MLE}} = \frac{n_H}{n_H + n_T}
\]

\[
\hat{\theta}_{\text{MAP}} = \frac{\alpha + n_H - 1}{\alpha + \beta + n_H + n_T - 2}
\]

- Suppose \(\theta^* := 0.5 \) and we observe: \(D = \{H, H, T, T, T, T\} \)
- Scenario 1: We assume \(\theta \sim \text{Beta}(4, 4) \). Which is more accurate – \(\theta_{\text{MLE}} \) or \(\theta_{\text{MAP}} \)?
 - \(\theta_{\text{MAP}} = 5/12, \theta_{\text{MLE}} = 1/3 \)
- Scenario 2: We assume \(\theta \sim \text{Beta}(1, 7) \). Which is more accurate – \(\theta_{\text{MLE}} \) or \(\theta_{\text{MAP}} \)?
 - \(\theta_{\text{MAP}} = 1/6, \theta_{\text{MLE}} = 1/3 \)
Bayesians vs. Frequentists

You are no good when sample is small

You give a different answer for different priors
Why was this a ML problem?

Machine learning is: the study of methods that

improve their performance (the accuracy of the predicted probability)
Why was this a ML problem?

Machine learning is: the study of methods that

improve their performance (the accuracy of the predicted probability)

on some task (predicting the probability of 'heads')
Why was this a ML problem?

Machine learning is: the study of methods that

improve their performance (the accuracy of the predicted probability)

on some task (predicting the probability of 'heads')

with experience (the more coin flips we see, the better our guess)
Learning involves ...

- Collect some data
Learning involves ...

- Collect some data
 - e.g., coin flips
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function

Key idea: these are choices. It's important to understand the implications of these choices and evaluate their trade-offs for the problem at hand.
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., bernoulli model, data likelihood/ a posteriori prob.

Key idea: these are choices. It's important to understand the implications of these choices and evaluate their trade-offs for the problem at hand.
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., bernoulli model, data likelihood/ a posteriori prob.
- Solve the problem: Choose an optimization procedure
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., bernoulli model, data likelihood/ a posteriori prob.
- Solve the problem: Choose an optimization procedure
 - e.g., set derivative of log to zero and solve to find MLE/MAP
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., bernoulli model, data likelihood/a posteriori prob.
- Solve the problem: Choose an optimization procedure
 - e.g., set derivative of log to zero and solve to find MLE/MAP
Learning involves ...

- Collect some data
 - e.g., coin flips
- Set up the problem: Choose a model / loss function
 - e.g., bernoulli model, data likelihood / a posteriori prob.
- Solve the problem: Choose an optimization procedure
 - e.g., set derivative of log to zero and solve to find MLE/MAP

Key idea: these are choices. It's important to understand the implications of these choices and evaluate their trade-offs for the problem at hand.
Linear Algebra Review
Recall: Task 1: Regression

How much should you sell your house for?

input: houses & features learn: $x \rightarrow y$ relationship predict: y (continuous)
Data Can be Compactly Represented by Matrices

- Learn parameters \((w_1, w_0)\) of the orange line \(y = w_1 x + w_0\)
 - Sq.ft
 - House 1: \(1000 \times w_1 + w_0 = 200,000\)
 - House 2: \(2000 \times w_1 + w_0 = 350,000\)
Data Can be Compactly Represented by Matrices

- Learn parameters \((w_1, w_0)\) of the orange line \(y = w_1 x + w_0\)

 Sq.ft

 House 1: \(1000 \times w_1 + w_0 = 200,000\)
 House 2: \(2000 \times w_1 + w_0 = 350,000\)

- Can represent compactly in matrix notation

 \[
 \begin{bmatrix}
 1000 & 1 \\
 2000 & 1
 \end{bmatrix}
 \begin{bmatrix}
 w_1 \\
 w_0
 \end{bmatrix}
 =
 \begin{bmatrix}
 200,000 \\
 350,000
 \end{bmatrix}
 \]
Some Concepts That You Should Know

- Invertibility of Matrices and Computing Inverses
- Vector Norms – L2, Frobenius etc., Inner Products
- Eigenvalues and Eigen-vectors
- Singular Value Decomposition
- Covariance Matrices and Positive Semi-definite-ness

Excellent Resources:

- Essence of Linear Algebra YouTube Series by 3Blue1Brown
- Prof. Gilbert Strang’s course at MIT
Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$
Matrix multiplication

• For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Multiplication is undefined with the number of columns in $A \neq$ the number of rows in B (except in case: cA where $c \in \mathbb{R}$ is a scalar)
Matrix multiplication

- For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

 $$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$

- Multiplication is undefined with the number of columns in $A \neq$ the number of rows in B (except in case: cA where $c \in \mathbb{R}$ is a scalar)

- Special cases:
Matrix multiplication

- For two matrices $A \in \mathbb{R}^{m\times n}, B \in \mathbb{R}^{n\times p}$, their product is:

$$AB = C \in R^{m\times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$

- Multiplication is undefined with the number of columns in $A \neq$ the number of rows in B (except in case: cA where $c \in \mathbb{R}$ is a scalar)

- Special cases:
 - Inner product: $x, y \in \mathbb{R}^n, \quad x^\top y \in \mathbb{R} = \sum_{i=1}^{n} x_iy_i$
Matrix multiplication

- For two matrices $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$, their product is:

$$AB = C \in \mathbb{R}^{m \times p} \iff C_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj}$$

- Multiplication is undefined with the number of columns in $A \neq$ the number of rows in B (except in case: cA where $c \in \mathbb{R}$ is a scalar)

- Special cases:
 - Inner product: $x, y \in \mathbb{R}^n$, $x^\top y \in \mathbb{R} = \sum_{i=1}^{n} x_iy_i$
 - Matrix-vector product: $A \in \mathbb{R}^{m \times n}, x \in \mathbb{R}^n \iff Ax \in \mathbb{R}^m$

$$A = \begin{bmatrix} a_1 & a_2 & \ldots & a_n \end{bmatrix}, \quad Ax \in \mathbb{R}^m = \sum_{i=1}^{n} a_ix_i$$
Important properties

- Associative: $A(BC) = (AB)C$

Not Commutative: $AB \neq BA$

Transpose: $(AB)^\top = B^\top A^\top$
Important properties

- Associative: $A(BC) = (AB)C$
- Distributive: $A(B + C) = AB + AC$
Important properties

- Associative: \(A(BC) = (AB)C \)
- Distributive: \(A(B + C) = AB + AC \)
- *Not* Commutative: \(AB \neq BA \)
Important properties

• Associative: \(A(BC) = (AB)C \)
• Distributive: \(A(B + C) = AB + AC \)
• *Not* Commutative: \(AB \neq BA \)
• Transpose: \((AB)^T = B^T A^T \)
• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$
• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

• If A^{-1} exists, then A is called invertible or non-singular
Matrix Inverse

- The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:
 $$AA^{-1} = A^{-1}A = I_n$$

- If A^{-1} exists, then A is called invertible or non-singular.
- Matrix A is invertible iff $\det(A) \neq 0$.

Let us solve the house-price prediction problem:

$$\begin{bmatrix} 1000 & 1 \\ 2000 & 1 \end{bmatrix} \begin{bmatrix} w_1 \\ w_0 \end{bmatrix} = \begin{bmatrix} 200,000 \\ 350,000 \end{bmatrix}$$
• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

• If A^{-1} exists, then A is called invertible or non-singular
• Matrix A is invertible iff $\det(A) \neq 0$
• Let us solve the house-price prediction problem
• The *inverse* of a matrix $A \in \mathbb{R}^{n\times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n\times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

• If A^{-1} exists, then A is called invertible or non-singular

• Matrix A is invertible iff $\det(A) \neq 0$

• Let us solve the house-price prediction problem
Matrix Inverse

• The *inverse* of a matrix $A \in \mathbb{R}^{n \times n}$ is a matrix $A^{-1} \in \mathbb{R}^{n \times n}$ such that:

$$AA^{-1} = A^{-1}A = I_n$$

• If A^{-1} exists, then A is called invertible or non-singular

• Matrix A is invertible iff $\det(A) \neq 0$

• Let us solve the house-price prediction problem

$$
\begin{bmatrix}
1000 & 1 \\
2000 & 1 \\
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0 \\
\end{bmatrix} =
\begin{bmatrix}
200,000 \\
350,000 \\
\end{bmatrix}
$$
Let us solve the house-price prediction problem

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(1)
Let us solve the house-price prediction problem

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\] \hspace{1cm} (1)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\left(\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix} \right)^{-1}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\] \hspace{1cm} (2)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
150 & 5 \\
250 & 0
\end{bmatrix}
\] \hspace{1cm} (3)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
150 \\
50
\end{bmatrix}
\] \hspace{1cm} (4)
• Let us solve the house-price prediction problem

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix} =
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(1)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix} = \left(\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}\right)^{-1}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(2)

\[
= \frac{1}{-1000}
\begin{bmatrix}
1 & -1 \\
-2000 & 1000
\end{bmatrix}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(3)
Let us solve the house-price prediction problem

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
= \begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]
(1)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
= \left(\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix} \right)^{-1}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]
(2)

\[
= \frac{1}{-1000} \begin{bmatrix}
1 & -1 \\
-2000 & 1000
\end{bmatrix}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]
(3)

\[
= \frac{1}{-1000} \begin{bmatrix}
150,000 \\
-5 \times 10^7
\end{bmatrix}
\]
(4)
Matrix Inverse

- Let us solve the house-price prediction problem

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(1)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
= \left(\begin{bmatrix}
1000 & 1 \\
2000 & 1
\end{bmatrix} \right)^{-1}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(2)

\[
= \frac{1}{-1000}
\begin{bmatrix}
1 & -1 \\
-2000 & 1000
\end{bmatrix}
\begin{bmatrix}
200,000 \\
350,000
\end{bmatrix}
\]

(3)

\[
= \frac{1}{-1000}
\begin{bmatrix}
150,000 \\
-5 \times 10^7
\end{bmatrix}
\]

(4)

\[
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
150 \\
50,000
\end{bmatrix}
\]

(5)
• You could have data from many houses

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1 \\
1500 & 1 \\
\vdots & \vdots \\
2500 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
w_1 \\
w_0 \\
\end{bmatrix}
= \begin{bmatrix}
200,000 \\
350,000 \\
300,000 \\
\vdots \\
450,000 \\
\end{bmatrix}
\]

\[A \times w = y\]
Norms and Loss Functions

- You could have data from many houses

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1 \\
1500 & 1 \\
\vdots & \vdots \\
2500 & 1 \\
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0 \\
\end{bmatrix}
=
\begin{bmatrix}
200,000 \\
350,000 \\
300,000 \\
\vdots \\
450,000 \\
\end{bmatrix}
\]

- There isn’t a \(w = [w_1, w_0]^T \) that will satisfy all equations
Norms and Loss Functions

- You could have data from many houses

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1 \\
1500 & 1 \\
\vdots & \vdots \\
2500 & 1
\end{bmatrix}
\begin{bmatrix}
w_1 \\
w_0
\end{bmatrix}
=
\begin{bmatrix}
200,000 \\
350,000 \\
300,000 \\
\vdots \\
450,000
\end{bmatrix}
\]

- There isn't a \(w = [w_1, w_0]^T \) that will satisfy all equations
- Want to find \(w \) that minimizes the difference between \(Aw, y \)
Norms and Loss Functions

- You could have data from many houses

\[
\begin{bmatrix}
1000 & 1 \\
2000 & 1 \\
1500 & 1 \\
\vdots & \vdots \\
2500 & 1 \\
\end{bmatrix}
\]

\[
A \times [w_1, w_0] =
\begin{bmatrix}
200,000 \\
350,000 \\
300,000 \\
\vdots \\
450,000 \\
\end{bmatrix}
\]

- There isn't a \(w = [w_1, w_0]^T \) that will satisfy all equations
- Want to find \(w \) that minimizes the difference between \(Aw, y \)
- But since this a vector, we need an operator that can map the vector \(y - Aw \) to a scalar
Norms and Loss Functions

- A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with

\[f(x) \geq 0 \quad \text{and} \quad f(x) = 0 \iff x = 0 \]

- $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$

- $f(x + y) \leq f(x) + f(y)$

- e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^{n} x_i^2}$

- e.g., ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
A vector norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ with

- $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$

For example, the ℓ_2 norm:

$$\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$$

And the ℓ_1 norm:

$$\|x\|_1 = \sum_{i=1}^n |x_i|$$

Question: What is the ℓ_1 norm of $y - Aw$ for the following problem?

$$\begin{bmatrix}
1 & 1 \\
2 & 1 \\
1.5 & 1 \\
2 & 1.5 & 1
\end{bmatrix} = \begin{bmatrix}
2 \\
3 \\
3.5 \\
4 \\
2.5 \\
0
\end{bmatrix}$$

Answer:

$$\|y - Aw\|_1 = 0.5$$
Norms and Loss Functions

- A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with
 - $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 - $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$

- Example:
 - ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
 - ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
Norms and Loss Functions

- A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with
 - $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 - $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$
 - $f(x + y) \leq f(x) + f(y)$

\[\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 1 & 2.5 & 1 \end{pmatrix} \begin{pmatrix} 1.5 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 2.5 \\ 3.5 \\ 4.5 \\ 3.5 \end{pmatrix} \]

- Example: ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- Example: ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$
Norms and Loss Functions

• A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with
 • $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 • $f(ax) = |a| f(x)$ for $a \in \mathbb{R}$
 • $f(x + y) \leq f(x) + f(y)$

• e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^T x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
Norms and Loss Functions

• A vector norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ with
 • $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 • $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$
 • $f(x + y) \leq f(x) + f(y)$

• e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
• e.g., ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$
Norms and Loss Functions

- A vector norm is any function $f : \mathbb{R}^n \to \mathbb{R}$ with
 - $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 - $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$
 - $f(x + y) \leq f(x) + f(y)$
- e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^{n} x_i^2}$
- e.g., ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^{n} |x_i|$

Question: What is the ℓ_1 norm of $y - Aw$ for the following problem?

$$
\[
\begin{pmatrix}
1 & 1 \\
2 & 1 \\
1.5 & 1 \\
2.5 & 1 \\
\end{pmatrix}
\begin{pmatrix}
2 \\
3.5 \\
3 \\
4.5 \\
\end{pmatrix}
=
\begin{pmatrix}
1.5 \\
0.5 \\
\end{pmatrix}
\] = y
$$
Norms and Loss Functions

- A vector norm is any function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ with
 - $f(x) \geq 0$ and $f(x) = 0 \iff x = 0$
 - $f(ax) = |a|f(x)$ for $a \in \mathbb{R}$
 - $f(x + y) \leq f(x) + f(y)$
- e.g., ℓ_2 norm: $\|x\|_2 = \sqrt{x^\top x} = \sqrt{\sum_{i=1}^n x_i^2}$
- e.g., ℓ_1 norm: $\|x\|_1 = \sum_{i=1}^n |x_i|$

Question: What is the ℓ_1 norm of $y - Aw$ for the following problem?

\[
\begin{bmatrix}
1 & 1 \\
2 & 1 \\
1.5 & 1 \\
2.5 & 1
\end{bmatrix}
\begin{bmatrix}
1.5 \\
0.5
\end{bmatrix}
=
\begin{bmatrix}
2 \\
3.5 \\
3 \\
4.5
\end{bmatrix}
\]

- **Answer:** $\|y - Aw\|_1 = 0.5$
Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
1 \\
0
\end{pmatrix}
=
\begin{pmatrix}
1 \\
4
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
0 \\
1
\end{pmatrix}
=
\begin{pmatrix}
2 \\
3
\end{pmatrix}
\]

Now we can express any vector as a linear combination of the above matrix-unit-vector products:

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
2 \\
1
\end{pmatrix}
= 2
\begin{pmatrix}
1 \\
4
\end{pmatrix}
+ 1
\begin{pmatrix}
2 \\
3
\end{pmatrix}
=
\begin{pmatrix}
4 \\
11
\end{pmatrix}
\]
Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?
- Its columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
4
\end{bmatrix}
\]
Matrix as Linear Transformation (see 3Blue1Brown)

• How exactly does square matrix multiplication transform vectors?
• It’s columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
4
\end{bmatrix}
\]
Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?
- It’s columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
= \begin{bmatrix}
1 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
= \begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

Now we can express any vector as a linear combination of the above matrix-unit-vector products.
Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?
- It’s columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix} =
\begin{bmatrix}
1 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix} =
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

- Now we can express any vector as a linear combination of the above matrix-unit-vector products

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\
1
\end{bmatrix} = 2 \begin{bmatrix}
1 \\
4
\end{bmatrix} + 1 \begin{bmatrix}
2 \\
3
\end{bmatrix}
\]
• How exactly does square matrix multiplication transform vectors?
• It’s columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
\end{bmatrix}
=
\begin{bmatrix}
1 \\
4 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
0 \\
1 \\
\end{bmatrix}
=
\begin{bmatrix}
2 \\
3 \\
\end{bmatrix}
\]

• Now we can express any vector as a linear combination of the above matrix-unit-vector products

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
2 \\
1 \\
\end{bmatrix}
= 2 \begin{bmatrix}
1 \\
4 \\
\end{bmatrix}
+ 1 \begin{bmatrix}
2 \\
3 \\
\end{bmatrix}
\]
Matrix as Linear Transformation (see 3Blue1Brown)

- How exactly does square matrix multiplication transform vectors?
- It’s columns correspond to re-scaled unit vectors

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\
0
\end{bmatrix}
=
\begin{bmatrix}
1 \\
4
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
0 \\
1
\end{bmatrix}
=
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

- Now we can express any vector as a linear combination of the above matrix-unit-vector products

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\
1
\end{bmatrix}
= 2
\begin{bmatrix}
1 \\
4
\end{bmatrix}
+ 1
\begin{bmatrix}
2 \\
3
\end{bmatrix}
\]

\[
=
\begin{bmatrix}
4 \\
11
\end{bmatrix}
\]
• For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.
• For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.

• Eigenvalues are the roots of $\det(A - \lambda I_n) = 0$
Eigenvalues and Eigenvectors

- For \(A \in \mathbb{R}^{n \times n} \), \(\lambda \) is an eigenvalue and \(x \neq 0 \) is an eigenvector if \(Ax = \lambda x \).
- Eigenvalues are the roots of \(\det(A - \lambda I_n) = 0 \).
- Eigenvalues are non-zero solutions of \(Ax = \lambda x \).
Eigenvalues and Eigenvectors

- For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.
- Eigenvalues are the roots of $\det(A - \lambda I_n) = 0$.
- Eigenvalues are non-zero solutions of $Ax = \lambda x$.
- Viewing A as a linear transformation, the vectors remain unchanged and only get re-scaled are the eigen-vectors. Their scaling factors are the eigen-values!

Question: Find the eigen-values and eigen-vectors of \[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]
Eigenvalues and Eigenvectors

• For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.

• Eigenvalues are the roots of $\det(A - \lambda I_n) = 0$

• Eigenvalues are non-zero solutions of $Ax = \lambda x$

• Viewing A as a linear transformation
 • The vectors remain unchanged and only get re-scaled are the eigen-vectors.
For \(A \in \mathbb{R}^{n \times n} \), \(\lambda \) is an eigenvalue and \(x \neq 0 \) is an eigenvector if \(Ax = \lambda x \).

Eigenvalues are the roots of \(\det(A - \lambda I_n) = 0 \).

Eigenvalues are non-zero solutions of \(Ax = \lambda x \).

Viewing \(A \) as a linear transformation:

- The vectors remain unchanged and only get re-scaled are the eigenvectors.
- Their scaling factors are the eigenvalues!
• For $A \in \mathbb{R}^{n \times n}$, λ is an eigenvalue and $x \neq 0$ is an eigenvector if $Ax = \lambda x$.

• Eigenvalues are the roots of $\det(A - \lambda I_n) = 0$

• Eigenvalues are non-zero solutions of $Ax = \lambda x$

• Viewing A as a linear transformation
 • The vectors remain unchanged and only get re-scaled are the eigen-vectors.
 • Their scaling factors are the eigen-values!

• **Question:** Find the eigen-values and eigen-vectors of

$$\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\]
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• **Eigen-values:**
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• Eigen-values:
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• **Eigen-values:**

\[
\det \left(\begin{bmatrix}
1 - \lambda & 2 \\
4 & 3 - \lambda
\end{bmatrix} \right) = 0
\]
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\]

• **Eigen-values:**

\[
\det \left(\begin{bmatrix}
1 - \lambda & 2 \\
4 & 3 - \lambda \\
\end{bmatrix} \right) = 0
\]

\[
(1 - \lambda)(3 - \lambda) - 8 = 0
\]
Question: Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

Eigen-values:

\[
\text{det}
\begin{bmatrix}
1 - \lambda & 2 \\
4 & 3 - \lambda
\end{bmatrix}
= 0
\]

\[
(1 - \lambda)(3 - \lambda) - 8 = 0
\]

\[
\lambda^2 - 4\lambda - 5 = 0
\]
• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• **Eigen-values:**

\[
\text{det}
\begin{pmatrix}
1 - \lambda & 2 \\
4 & 3 - \lambda
\end{pmatrix}
= 0
\]

\[
(1 - \lambda)(3 - \lambda) - 8 = 0
\]

\[
\lambda^2 - 4\lambda - 5 = 0
\]

\[
(\lambda - 5)(\lambda + 1) = 0
\]
Question: Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

Eigen-values:

\[
\det \left(\begin{bmatrix} 1 - \lambda & 2 \\ 4 & 3 - \lambda \end{bmatrix} \right) = 0
\]

\[
(1 - \lambda)(3 - \lambda) - 8 = 0
\]

\[
\lambda^2 - 4\lambda - 5 = 0
\]

\[
(\lambda - 5)(\lambda + 1) = 0
\]

\[
\lambda = 5, \lambda = -1
\]
Eigenvalues and Eigenvectors

• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

Eigen-values: \(\lambda = 5, \lambda = -1 \)

Eigen-vectors:

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = 5
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}1 \\ 2\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = -1
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}-1 \\ 1\end{bmatrix}
\]
• **Question**: Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• Eigen-values: \(\lambda = 5, \lambda = -1 \)
Eigenvalues and Eigenvectors

- **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

- Eigen-values: \(\lambda = 5, \lambda = -1 \)
- Eigen-vectors:

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= 5
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]
Eigenvalues and Eigenvectors

• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• **Eigen-values:** \(\lambda = 5, \lambda = -1 \)
• **Eigen-vectors:**

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= 5
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= -1
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]
• Question: Find the eigen-values and eigen-vectors of

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\]

• Eigen-values: \(\lambda = 5, \lambda = -1 \)
• Eigen-vectors:

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
= 5
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
= \begin{pmatrix}
1 \\
2
\end{pmatrix}
\]

\[
\begin{pmatrix}
1 & 2 \\
4 & 3
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
= -1
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
x_1 \\
x_2
\end{pmatrix}
= \begin{pmatrix}
-1 \\
1
\end{pmatrix}
\]

• **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\]

• **Eigen-values:** \(\lambda = 5, \lambda = -1 \)

• **Eigen-vectors:**

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= 5
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\implies
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= \begin{bmatrix}
1 \\
2
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
= -1
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
\]
Eigenvalues and Eigenvectors

- **Question:** Find the eigen-values and eigen-vectors of

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\]

- **Eigen-values:** \(\lambda = 5, \lambda = -1 \)

- **Eigen-vectors:**

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
= 5
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
\implies
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
= \begin{bmatrix}
1 \\
2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
4 & 3 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
= -1
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
\implies
\begin{bmatrix}
x_1 \\
x_2 \\
\end{bmatrix}
= \begin{bmatrix}
-1 \\
1 \\
\end{bmatrix}
\]
• Group the eigen-vectors and eigen values into the following matrices.

\[P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \]

\[\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \]
• Group the eigen-vectors and eigen values into the following matrices.

\[P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \]

\[\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \]
• Group the eigen-vectors and eigen values into the following matrices.

\[P = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \]

\[\Lambda = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \]

• If the eigen-vectors are linearly independent, we can express \(A \) as

\[A = P\Lambda P^{-1} \]

\[= \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1} \]
• Why is this useful?
• Why is this useful?
• Suppose we want to find powers of A, eg. A^4
Eigen-Value Decomposition

• Why is this useful?
• Suppose we want to find powers of A, eg. A^4
• One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
Why is this useful?

Suppose we want to find powers of A, eg. A^4

One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
• Why is this useful?
• Suppose we want to find powers of A, eg. A^4
• One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

• Instead we could use the eigen-value decomposition

$$A^4 = P \Lambda P^{-1} P \Lambda P^{-1} P \Lambda P^{-1} P \Lambda P^{-1}$$
Eigen-Value Decomposition

• Why is this useful?
• Suppose we want to find powers of A, eg. A^4
• One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

• Instead we could use the eigen-value decomposition

$$A^4 = P \Lambda P^{-1} P \Lambda P^{-1} P \Lambda P^{-1} P \Lambda P^{-1}$$
• Why is this useful?
• Suppose we want to find powers of A, eg. A^4
• One option, that is quite tedious is:

$$A^4 = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$

• Instead we could use the eigen-value decomposition

$$A^4 = P\Lambda P^{-1}P\Lambda P^{-1}P\Lambda P^{-1}P\Lambda P^{-1} = P\Lambda^4 P^{-1} = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 5^4 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}^{-1}$$
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices

\[A = U \Sigma V^\top, \]

- \(U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n} \) are orthogonal matrices (i.e. \(U^\top U = U U^\top = I \))

- \(\Sigma \in \mathbb{R}^{m \times n} \) is a diagonal matrix with singular values of \(A \) denoted by \(\sigma_i \) appearing by non-increasing order:
 \[\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0. \]

- The square singular values of \(A \) are the eigenvalues of the matrix \(AA^\top \) or \(A^\top A \), i.e.,
 \[\sigma_i(A) = \sqrt{\lambda_i(AA^\top)} = \sqrt{\lambda_i(A^\top A)}. \]

- \(V \) is the matrix of eigen-vectors of \(A^\top A \)

- \(U \) is the matrix of eigen-vectors of \(AA^\top \)
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^\top,$$

- $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^\top = U^{-1}$)
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with singular values of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.
- The square singular values of A are the eigenvalues of the matrix AA^\top or $A^\top A$, i.e., $\sigma_i(A) = \sqrt{\lambda_i(AA^\top)} = \sqrt{\lambda_i(A^\top A)}$.
- V is the matrix of eigen-vectors of $A^\top A$.
- U is the matrix of eigen-vectors of AA^\top.
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^\top,$$

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^\top = U^{-1}$)
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices.
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^\top,$$

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^\top = U^{-1}$).
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with singular values of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.

σ_i are the square singular values of A. They are the eigenvalues of the matrices AA^\top or $A^\top A$.

V is the matrix of eigen-vectors of $A^\top A$.

U is the matrix of eigen-vectors of AA^\top.
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^\top,$$

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^\top = U^{-1}$)
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with singular values of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.
- The square singular values of A are the eigenvalues of the matrix AA^\top or $A^\top A$, i.e., $\sigma_i(A) = \sqrt{\lambda_i(AA^\top)} = \sqrt{\lambda_i(A^\top A)}$
Singular value decomposition (SVD)

• EVD only works for square, diagonalizable matrices
• SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^T,$$

• $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^T = U^{-1}$)
• $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with singular values of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.
• The square singular values of A are the eigenvalues of the matrix AA^T or $A^T A$, i.e., $\sigma_i(A) = \sqrt{\lambda_i(AA^T)} = \sqrt{\lambda_i(A^T A)}$
• V is the matrix of eigen-vectors of $A^T A$
Singular value decomposition (SVD)

- EVD only works for square, diagonalizable matrices
- SVD works for matrices of any size! It decomposes $A \in \mathbb{R}^{m \times n}$ as follows.

$$A = U \Sigma V^\top,$$

- $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices (i.e. $U^\top = U^{-1}$)
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix with singular values of A denoted by σ_i appearing by non-increasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$.
- The square singular values of A are the eigenvalues of the matrix AA^\top or $A^\top A$, i.e., $\sigma_i(A) = \sqrt{\lambda_i(AA^\top)} = \sqrt{\lambda_i(A^\top A)}$
- V is the matrix of eigen-vectors of $A^\top A$
- U is the matrix of eigen-vectors of AA^T
1. Recap: What is Machine Learning?

2. Probability Review

3. A Simple Learning Problem: MLE/MAP Estimation

4. Linear Algebra Review