18-661 Introduction to Machine Learning

Clustering, Part II

Spring 2020

ECE – Carnegie Mellon University
Announcements

• **Homework 5:** deadline extended to April 3rd

• **Final exam**
 • Multiple-choice questions will be an online timed quiz during the lecture time on Apr 29th (we will take potential internet issues and timezones into account when setting the time)
 • Descriptive questions will be a take-home exam (1-2 days)
 • More details to follow
 • Please let us know asap if you have conflicting exams or need special accommodations

• Recitation this week on clustering and GMMs
1. Review: Clustering and k-means

2. Gaussian mixture models
Review: Clustering and k-means
Supervised Learning: labeled observations \(\{(x_1, y_1), \ldots (x_n, y_n)\} \)

- Labels ‘teach’ algorithm to learn mapping from observations to labels
- Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)
Supervised versus Unsupervised Learning

Supervised Learning: labeled observations \(\{(x_1, y_1), \ldots, (x_n, y_n)\} \)

- Labels ‘teach’ algorithm to learn mapping from observations to labels
- Examples: Classification (Logistic Reg., SVMs, Neural Nets, Nearest Neighbors, Decision Trees), Regression (Linear Reg., Neural Nets)

Unsupervised Learning: unlabeled observations \(\{x_1, \ldots, x_n\} \)

- Learning algorithm must find latent structure from features alone
- Can be goal in itself (discover hidden patterns, exploratory analysis)
- Can be means to an end (pre-processing for supervised task)
- Examples:
 - Clustering
 - Dimensionality Reduction: Transform an initial feature representation into a more concise representation
Setup Given $\mathcal{D} = \{x_n\}_{n=1}^{N}$ and K, we want to output:

- $\{\mu_k\}_{k=1}^{K}$: prototypes of clusters
- $A(x_n) \in \{1, 2, \ldots, K\}$: the cluster membership
Setup Given $\mathcal{D} = \{x_n\}_{n=1}^N$ and K, we want to output:

- $\{\mu_k\}_{k=1}^K$: prototypes of clusters

Toy Example Cluster data into two clusters.

![Toy Example](image-url)
Setup Given $\mathcal{D} = \{x_n\}_{n=1}^N$ and K, we want to output:

- $\{\mu_k\}_{k=1}^K$: prototypes of clusters
- $A(x_n) \in \{1, 2, \ldots, K\}$: the cluster membership

Toy Example Cluster data into two clusters.
Clustering

Setup Given $\mathcal{D} = \{x_n\}_{n=1}^N$ and K, we want to output:

- $\{\mu_k\}_{k=1}^K$: prototypes of clusters
- $A(x_n) \in \{1, 2, \ldots, K\}$: the cluster membership

Toy Example Cluster data into two clusters.

![Diagram showing two clusters with prototypes and data points colored accordingly.](a)
Clustering

Setup Given $\mathcal{D} = \{x_n\}_{n=1}^N$ and K, we want to output:

- $\{\mu_k\}_{k=1}^K$: prototypes of clusters
- $A(x_n) \in \{1, 2, \ldots, K\}$: the cluster membership

Toy Example Cluster data into two clusters.

![Toy Example Diagram](image)

Example Applications

- Identify communities within social networks
- Find topic groups in news stories
- Group similar sequences into gene families
k-means

k-means: an iterative clustering method

High-level idea:

- **Initialize:** Pick k random points as cluster centers, $\{\mu_1, \ldots, \mu_k\}$
- **Alternate:**
 1. Assign data points to closest cluster center in $\{\mu_1, \ldots, \mu_k\}$
 2. Change each cluster center to the average of its assigned points
- **Stop:** When the clusters are stable
k-means example (several iterations)

(a) \cdots

(b) \cdots

(c) \cdots

(d) \cdots

(e) \cdots
k-means example (several iterations)
k-means example (several iterations)

(a)

(b)

(c)

(d)

(e)

(f)

(g)
k-means example (several iterations)
k-means example (several iterations)
Intuition: Data points assigned to cluster k should be near prototype μ_k
Intuition: Data points assigned to cluster k should be near prototype μ_k.

Distortion measure: (clustering objective function, cost function)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|x_n - \mu_k\|^2$$

where $r_{nk} \in \{0, 1\}$ is an indicator variable

$$r_{nk} = 1 \text{ if and only if } A(x_n) = k$$
Intuition: Data points assigned to cluster k should be near prototype μ_k

Distortion measure: (clustering objective function, cost function)

$$ J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \| x_n - \mu_k \|^2 $$

where $r_{nk} \in \{0, 1\}$ is an indicator variable

$$ r_{nk} = 1 \quad \text{if and only if} \quad A(x_n) = k $$

Notes:

- Distance measure: $\| x_n - \mu_k \|^2$ calculates how far x_n is from the cluster center μ_k
Intuition: Data points assigned to cluster k should be near prototype μ_k.

Distortion measure: (clustering objective function, cost function)

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} ||x_n - \mu_k||^2$$

where $r_{nk} \in \{0, 1\}$ is an indicator variable

$$r_{nk} = 1 \quad \text{if and only if} \quad A(x_n) = k$$

Notes:

- Distance measure: $||x_n - \mu_k||^2$ calculates how far x_n is from the cluster center μ_k
- Canonical example is the 2-norm, i.e., $|| \cdot ||^2_2$, but could be something else!
Algorithm

Minimize distortion Alternative optimization between \(\{r_{nk}\} \) and \(\{\mu_k\} \)

- **Step 0** Initialize \(\{\mu_k\} \) to some values
- **Step 1** Fix \(\{\mu_k\} \) and minimize over \(\{r_{nk}\} \), to get this assignment:

\[
r_{nk} = \begin{cases}
1 & \text{if } k = \arg\min_j ||x_n - \mu_j||^2 \\
0 & \text{otherwise}
\end{cases}
\]

Why do we get this? – Try to derive it from the expression of \(J \)

- **Step 2** Fix \(\{r_{nk}\} \) and minimize over \(\{\mu_k\} \) to get this update:

\[
\mu_k = \sum_n r_{nk} x_n / \sum_n r_{nk}
\]

Why do we get this? – Try to derive it from the expression of \(J \)

- **Step 3** Return to Step 1 unless stopping criterion is met
Minimize distortion Alternative optimization between \(\{ r_{nk} \} \) and \(\{ \mu_k \} \)

- **Step 0** Initialize \(\{ \mu_k \} \) to some values
- **Step 1** Fix \(\{ \mu_k \} \) and minimize over \(\{ r_{nk} \} \), to get this assignment:

\[
r_{nk} = \begin{cases}
1 & \text{if } k = \arg\min_j ||x_n - \mu_j||^2 \\
0 & \text{otherwise}
\end{cases}
\]

Why do we get this? – Try to derive it from the expression of \(J \)

- **Step 2** Fix \(\{ r_{nk} \} \) and minimize over \(\{ \mu_k \} \) to get this update:

\[
\mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}
\]

Why do we get this? – Try to derive it from the expression of \(J \)
Minimize distortion Alternative optimization between \(\{ r_{nk} \} \) and \(\{ \mu_k \} \)

- **Step 0** Initialize \(\{ \mu_k \} \) to some values
- **Step 1** Fix \(\{ \mu_k \} \) and minimize over \(\{ r_{nk} \} \), to get this assignment:

 \[
 r_{nk} = \begin{cases}
 1 & \text{if } k = \text{argmin}_j ||x_n - \mu_j||^2 \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Why do we get this? – Try to derive it from the expression of \(J \)

- **Step 2** Fix \(\{ r_{nk} \} \) and minimize over \(\{ \mu_k \} \) to get this update:

 \[
 \mu_k = \frac{\sum_n r_{nk} x_n}{\sum_n r_{nk}}
 \]

 Why do we get this? – Try to derive it from the expression of \(J \)

- **Step 3** Return to Step 1 unless stopping criterion is met
Properties of k-means algorithm

Does it converge?

• Guaranteed to converge in a finite number of iterations
 • Key idea: k-means is an alternating optimization approach
 • Each step is guaranteed to decrease the objective/cost function—thus guaranteed to converge
 • *However*, may converge to a local minimum (objective is non-convex)

What's the runtime?

• Running time per iteration:
 • Assume: n data points, each with d features, and k clusters
 • Assign data points to closest cluster: $O(ndk)$
 • Re-compute cluster centers: $O(ndk)$
 • Thus, total runtime is $O(ndki)$, where i is the number of iterations
Properties of k-means algorithm

Does it converge?

- **Guaranteed to converge in a finite number of iterations**
 - Key idea: k-means is an alternating optimization approach
 - Each step is guaranteed to decrease the objective/cost function—thus guaranteed to converge
 - *However*, may converge to a *local minimum* (objective is non-convex)

What's the runtime?

- Running time per iteration:
 - Assume: n data points, each with d features, and k clusters
 - Assign data points to closest cluster: $O(ndk)$
 - Re-compute cluster centers: $O(ndk)$
 - Thus, total runtime is $O(ndki)$, where i is the number of iterations
Properties of k-means algorithm

Does it converge?

- **Guaranteed to converge in a finite number of iterations**
 - Key idea: k-means is an alternating optimization approach
 - Each step is guaranteed to decrease the objective/cost function—thus guaranteed to converge
 - *However*, may converge to a *local minimum* (objective is non-convex)

What’s the runtime?

- Running time per iteration:
 - Assume: n data points, each with d features, and k clusters
 - Assign data points to closest cluster: $O(ndk)$
 - Re-compute cluster centers: $O(ndk)$

Thus, total runtime is $O(ndki)$, where i is the number of iterations.
Properties of k-means algorithm

Does it converge?

- **Guaranteed to converge in a finite number of iterations**
 - Key idea: k-means is an alternating optimization approach
 - Each step is guaranteed to decrease the objective/cost function—thus guaranteed to converge
 - *However*, may converge to a *local minimum* (objective is non-convex)

What’s the runtime?

- **Running time per iteration:**
 - Assume: n data points, each with d features, and k clusters
 - Assign data points to closest cluster: $O(ndk)$
 - Re-compute cluster centers: $O(ndk)$

- **Thus, total runtime is:** $O(ndki)$, where i is the number of iterations
Practical Issues with \(k\)-means

- How to select \(k\)?
 - Prior knowledge
 - Heuristics (e.g., elbow method)
- How to select distance measure?
 - Often requires some knowledge of problem
 - Some examples: Euclidean distance (for images), Hamming distance (distance between two strings), shared key words (for websites)
- How to initialize cluster centers?
 - The final clustering can depend significantly on the initial points you pick!
Elbow method

Key idea: select a small value of \(k \) that minimizes within-cluster distances.
How to get k-means to work on this data?

Should look at the distance of the data points from the origin

$\sqrt{x^2 + y^2}$
How to get k-means to work on this data?

Should look at the distance of the data points from the origin $\sqrt{x_n^2 + y_n^2}$
Changing features (distance measure) can help

If the cluster i mean is $(\mu_{i,x}, \mu_{i,y})$, the distance of (x_n, y_n) from it can be defined as $|\sqrt{\mu_{i,x}^2 + \mu_{i,y}^2} - \sqrt{x_n^2 + y_n^2}|$.
Key idea: Run k-means, but with a better initialization

- Choose center μ_1 at random
- For $j = 2, \ldots, k$
 - Choose μ_j among x_1, \ldots, x_n with probability:
 - $P(\mu_j = x_i) \propto \min_{j' < j} ||x_i - \mu_{j'}||^2$

Initialization helps to get good coverage of the space

Theorem: k-means++ always obtains a $O(\log k)$ approximation to the optimal solution in expectation.

Running k-means after this initialization can only improve on the result
k-means++

N=200, K=5
K-means with random initialization

N=200, K=5
K-means++
Connection to k-Nearest Neighbors

- Nearest Neighbors is a \textit{supervised} learning method
 - Each training point x_n has a corresponding given label y_n
 - Objective: Assign label to a new x by looking at the labels of its k nearest points

- Clustering is an \textit{unsupervised} learning method
 - We are given training points x_n without labels
 - Objective: Divide them into k groups to understand patterns in the data
Clustering can make Nearest Neighbors more efficient

- A drawback of nearest neighbors is that we have to remember the training data
- Clustering can help compress the training data into a small number of representative points

Algorithm to Improve Nearest Neighbors

- For all training data points x_n with label $y_n = c$, for C classes $c = 1, \ldots C$, cluster the x_n into R groups.
- Store these R cluster means for each of the C classes
- For a test data point x, find the k nearest neighbors among the RC cluster means and assign their majority label to x
1. Review: Clustering and k-means

2. Gaussian mixture models
Gaussian mixture models
Data points are assigned *deterministically* to one (and only one) cluster
One more potential issue with k-means . . .

Data points are assigned *deterministically* to one (and only one) cluster.

In reality, clusters may overlap, and it may be better to identify the *probability* that a point belongs to each cluster.
Probabilistic interpretation of clustering?

How can we model $p(x)$ to reflect our intuition that points stay close to their cluster centers?
Probabilistic interpretation of clustering?

How can we model $p(x)$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters

(b) Points seem to form 3 clusters
How can we model $p(x)$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters
- We cannot model $p(x)$ with simple and known distributions
Probabilistic interpretation of clustering?

How can we model $p(x)$ to reflect our intuition that points stay close to their cluster centers?

- Points seem to form 3 clusters
- We cannot model $p(x)$ with simple and known distributions
- E.g., the data is not a Gaussian b/c we have 3 distinct concentrated regions
Key idea: Model each region with a distinct distribution.
Key idea: Model each region with a distinct distribution

Can use Gaussians — Gaussian mixture models (GMMs)
Key idea: Model each region with a distinct distribution.

Can use Gaussians — Gaussian mixture models (GMMs)
• **Key idea:** Model each region with a distinct distribution

• Can use Gaussians — Gaussian mixture models (GMMs)

• *However*, we don’t know cluster assignments (label), parameters of Gaussians, or mixture components!
Gaussian mixture models: intuition

- **Key idea:** Model each region with a distinct distribution

- Can use Gaussians — Gaussian mixture models (GMMs)

- *However*, we don’t know *cluster assignments* (label), *parameters* of Gaussians, or *mixture components*!

- Must learn from *unlabeled* data

 \[\mathcal{D} = \{ \mathbf{x}_n \}_{n=1}^N \]
Recall: Gaussian (Normal) distributions

\[x \sim \mathcal{N}(x | \mu, \Sigma) = (2\pi)^{-d/2} |\Sigma|^{-1/2} \exp \left\{ -\frac{1}{2} (x - \mu)^\top \Sigma^{-1} (x - \mu) \right\} \]
Gaussian Mixture Models: Formal Definition

GMM has the following density function for x

$$p(x) = \sum_{k=1}^{K} \omega_k N(x | \mu_k, \Sigma_k)$$

- K: number of Gaussians — they are called mixture components
- μ_k and Σ_k: mean and covariance matrix of k-th component
GMM has the following density function for x

$$p(x) = \sum_{k=1}^{K} \omega_k N(x | \mu_k, \Sigma_k)$$

- K: number of Gaussians — they are called mixture components
- μ_k and Σ_k: mean and covariance matrix of k-th component
- ω_k: mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:
GMM has the following density function for x

$$p(x) = \sum_{k=1}^{K} \omega_k N(x | \mu_k, \Sigma_k)$$

- K: number of Gaussians — they are called mixture components
- μ_k and Σ_k: mean and covariance matrix of k-th component
- ω_k: mixture weights (or priors) represent how much each component contributes to final distribution. They satisfy 2 properties:

$$\forall \ k, \ \omega_k > 0, \ \text{and} \ \sum_k \omega_k = 1$$

These properties ensure that $p(x)$ is a probability density function.
GMM as the marginal distribution of a joint distribution

Consider the following joint distribution

\[p(x, z) = p(z)p(x|z) \]

where \(z \) is a discrete random variable taking values between 1 and \(K \).
Consider the following joint distribution

\[p(x, z) = p(z)p(x|z) \]

where \(z \) is a discrete random variable taking values between 1 and \(K \).

Denote

\[\omega_k = p(z = k) \]

Now, assume the conditional distributions are Gaussian distributions

\[p(x|z = k) = N(x|\mu_k, \Sigma_k) \]
Consider the following joint distribution

\[p(x, z) = p(z)p(x|z) \]

where \(z \) is a discrete random variable taking values between 1 and \(K \).

Denote

\[\omega_k = p(z = k) \]

Now, assume the conditional distributions are Gaussian distributions

\[p(x|z = k) = N(x|\mu_k, \Sigma_k) \]

Then, the marginal distribution of \(x \) is

\[p(x) = \sum_{k=1}^{K} \omega_k N(x|\mu_k, \Sigma_k) \]

Namely, the Gaussian mixture model
Gaussian mixtures in 1D
Gaussian mixture model for clustering
The conditional distribution between x and z (representing color) are

\[
p(x|z = red) = N(x|\mu_1, \Sigma_1)
\]
\[
p(x|z = blue) = N(x|\mu_2, \Sigma_2)
\]
\[
p(x|z = green) = N(x|\mu_3, \Sigma_3)
\]
The conditional distribution between x and z (representing color) are

$$p(x|z = \text{red}) = N(x|\mu_1, \Sigma_1)$$
$$p(x|z = \text{blue}) = N(x|\mu_2, \Sigma_2)$$
$$p(x|z = \text{green}) = N(x|\mu_3, \Sigma_3)$$

The marginal distribution is thus

$$p(x) = p(z = \text{red})N(x|\mu_1, \Sigma_1) + p(z = \text{blue})N(x|\mu_2, \Sigma_2) + p(z = \text{green})N(x|\mu_3, \Sigma_3)$$
Parameter estimation for Gaussian mixture models

The parameters in GMMs are
The parameters in GMMs are $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$.

Let’s first consider the simple/unrealistic case where we have labels z.

Define $D' = \{x_n, z_n\}_{n=1}^N$, $D = \{x_n\}_{n=1}^N$.

- D' is the complete data.
- D the incomplete data.

How can we learn our parameters?
The parameters in GMMs are $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$

Let’s first consider the simple/unrealistic case where we have labels z

Define $\mathcal{D}' = \{x_n, z_n\}_{n=1}^N$, $\mathcal{D} = \{x_n\}_{n=1}^N$

- \mathcal{D}' is the complete data
- \mathcal{D} the incomplete data

How can we learn our parameters?

Given \mathcal{D}', the maximum likelihood estimation of the θ is given by

$$\theta = \arg \max \log \mathcal{D}' = \sum_n \log p(x_n, z_n)$$
The complete likelihood is decomposable

\[\sum_n \log p(x_n, z_n) = \sum_n \log p(z_n)p(x_n|z_n) = \sum_k \sum_{n:z_n=k} \log p(z_n)p(x_n|z_n) \]

where we have grouped data by cluster labels \(z_n \).
The complete likelihood is decomposable

$$
\sum_n \log p(x_n, z_n) = \sum_n \log p(z_n)p(x_n|z_n) = \sum_k \sum_{n:z_n=k} \log p(z_n)p(x_n|z_n)
$$

where we have grouped data by cluster labels z_n.

Let $r_{nk} \in \{0, 1\}$ be a binary variable that indicates whether $z_n = k$:
The complete likelihood is decomposable

\[\sum_{n} \log p(x_n, z_n) = \sum_{n} \log p(z_n)p(x_n|z_n) = \sum_{k} \sum_{n: z_n = k} \log p(z_n)p(x_n|z_n) \]

where we have grouped data by cluster labels \(z_n \).

Let \(r_{nk} \in \{0, 1\} \) be a binary variable that indicates whether \(z_n = k \):

\[\sum_{n} \log p(x_n, z_n) = \sum_{k} \sum_{n} r_{nk} \log p(z = k)p(x_n|z = k) \]
Parameter estimation for GMMs: complete data

The complete likelihood is decomposable

\[
\sum_n \log p(x_n, z_n) = \sum_n \log p(z_n) p(x_n | z_n) = \sum_k \sum_{n: z_n = k} \log p(z_n) p(x_n | z_n)
\]

where we have grouped data by cluster labels \(z_n \).

Let \(r_{nk} \in \{0, 1\} \) be a binary variable that indicates whether \(z_n = k \):

\[
\sum_n \log p(x_n, z_n) = \sum_k \sum_n r_{nk} \log p(z = k) p(x_n | z = k)
\]

\[
= \sum_k \sum_n r_{nk} [\log \omega_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)]
\]

Note: in the complete setting the \(r_{nk} \) are binary, but later we will ‘relax’ these variables and allow them to take on fractional values
Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$\sum_{n} \log p(x_n, z_n) = \sum_{k} \sum_{n} r_{nk} \left[\log \omega_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k) \right]$$
Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$\sum_n \log p(x_n, z_n) = \sum_k \sum_n r_{nk} \left[\log \omega_k + \log N(x_n | \mu_k, \Sigma_k) \right]$$

Regrouping, we have

$$\sum_n \log p(x_n, z_n) = \sum_k \sum_n r_{nk} \log \omega_k + \sum_k \left\{ \sum_n r_{nk} \log N(x_n | \mu_k, \Sigma_k) \right\}$$
Parameter estimation for GMMs: complete data

From our previous discussion, we have

$$\sum_n \log p(x_n, z_n) = \sum_k \sum_n r_{nk} [\log \omega_k + \log N(x_n | \mu_k, \Sigma_k)]$$

Regrouping, we have

$$\sum_n \log p(x_n, z_n) = \sum_k \sum_n r_{nk} \log \omega_k + \sum_k \left\{ \sum_n r_{nk} \log N(x_n | \mu_k, \Sigma_k) \right\}$$

The term inside the braces depends on k-th component’s parameters. It is now easy to show that (left as an exercise) the MLE is:

$$\omega_k = \frac{\sum_n r_{nk}}{\sum_k \sum_n r_{nk}}, \quad \mu_k = \frac{1}{\sum_n r_{nk}} \sum_n r_{nk} x_n$$

$$\Sigma_k = \frac{1}{\sum_n r_{nk}} \sum_n r_{nk} (x_n - \mu_k)(x_n - \mu_k)^\top$$

What’s the intuition?
Since r_{nk} is binary, the previous solution is nothing but:

- ω_k: fraction of total data points whose cluster label z_n is k
 - note that $\sum_k \sum_n r_{nk} = N$
- μ_k: mean of all data points whose z_n is k
- Σ_k: co-variance of all data points whose z_n is k
Since r_{nk} is binary, the previous solution is nothing but:

- ω_k: fraction of total data points whose cluster label z_n is k
 - note that $\sum_k \sum_n r_{nk} = N$
- μ_k: mean of all data points whose z_n is k
- Σ_k: co-variance of all data points whose z_n is k

We use the knowledge of true cluster labels z_n (which imply the r_{nk}) to estimate θ.

What do we do when we *do not* know z_n (incomplete data)
Parameter estimation for GMMs: Incomplete data

GMM Parameters

\[\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K \]

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: \(D = \{x_n\} \)
- Unobserved (hidden): \(\{z_n\} \)
Parameter estimation for GMMs: Incomplete data

GMM Parameters

\[\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K \]

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: \(D = \{x_n\} \)
- Unobserved (hidden): \(\{z_n\} \)

Goal

Obtain the maximum likelihood estimate of \(\theta \):

\[\theta = \arg \max \ell(\theta) = \arg \max \log D = \arg \max \sum_n \log p(x_n|\theta) \]
Parameter estimation for GMMs: Incomplete data

GMM Parameters

\[\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K \]

Incomplete Data

Our data contains observed and unobserved data, and hence is incomplete

- Observed: \(D = \{x_n\} \)
- Unobserved (hidden): \(\{z_n\} \)

Goal Obtain the maximum likelihood estimate of \(\theta \):

\[\theta = \arg \max \ell(\theta) = \arg \max \log D = \arg \max \sum_n \log p(x_n|\theta) \]

\[= \arg \max \sum_n \log \sum_{z_n} p(x_n, z_n|\theta) \]

The objective function \(\ell(\theta) \) is called the *incomplete* log-likelihood.
When z_n is not given, we can guess it via the *posterior probability* (recall: Bayes’ rule!)

\[
p(z_n = k | x_n) = \frac{p(x_n | z_n = k) p(z_n = k)}{p(x_n)} = \frac{p(x_n | z_n = k) p(z_n = k)}{\sum_{k' = 1}^{K} p(x_n | z_n = k') p(z_n = k')}
\]

\[
= \frac{N(x_n | \mu_k, \Sigma_k) \times \omega_k}{\sum_{k' = 1}^{K} N(x_n | \mu_{k'}, \Sigma_{k'}) \times \omega_{k'}}
\]
Parameter estimation for GMMs: incomplete data

When z_n is not given, we can guess it via the posterior probability (recall: Bayes’ rule!)

\[
p(z_n = k | x_n) = \frac{p(x_n | z_n = k)p(z_n = k)}{p(x_n)} = \frac{p(x_n | z_n = k)p(z_n = k)}{\sum_{k'=1}^{K} p(x_n | z_n = k')p(z_n = k')}
\]

\[
= \frac{N(x_n | \mu_k, \Sigma_k) \times \omega_k}{\sum_{k'=1}^{K} N(x_n | \mu_{k'}, \Sigma_{k'}) \times \omega_{k'}}
\]

To compute the posterior probability, we need to know the parameters
\[
\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^{K}
\]

Idea: Let’s pretend we know these parameters so we can compute the posterior probability.

How is that going to help us?
Estimation with soft r_{nk}

We define $r_{nk} = p(z_n = k | x_n)$
Estimation with soft r_{nk}

We define $r_{nk} = p(z_n = k|x_n)$

- Recall that r_{nk} was previously binary
- Now it’s a “soft” assignment of x_n to k-th component
- Each x_n is assigned to a component fractionally according to $p(z_n = k|x_n)$
Estimation with soft r_{nk}

We define $r_{nk} = p(z_n = k|x_n)$

- Recall that r_{nk} was previously binary
- Now it’s a “soft” assignment of x_n to k-th component
- Each x_n is assigned to a component fractionally according to $p(z_n = k|x_n)$

If we solve for the MLE of $\theta = \{\omega_k, \mu_k, \Sigma_k\}_{k=1}^K$ given soft r_{nk}s, we get the same expressions as before!

$$\omega_k = \frac{\sum_n r_{nk}}{\sum_k \sum_n r_{nk}}, \quad \mu_k = \frac{1}{\sum_n r_{nk}} \sum_n r_{nk} x_n$$

$$\Sigma_k = \frac{1}{\sum_n r_{nk}} \sum_n r_{nk} (x_n - \mu_k)(x_n - \mu_k)^T$$

But remember, we’re ‘cheating’ by using θ to compute r_{nk}!
Iterative procedure

Alternate between estimating r_{nk} and computing parameters

- Step 0: initialize θ with some values (random or otherwise)
- Step 1: set $r_{nk} = p(z_n = k|x_n)$ for current θ using Bayes Rule
- Step 2: update θ using these r_{nk}s using MLE
- Step 3: go back to Step 1

At the end convert r_{nk} back to binary by setting the largest r_{nk} for point x_n to 1 and others to 0.
Iterative procedure

Alternate between estimating r_{nk} and computing parameters

- Step 0: initialize θ with some values (random or otherwise)
- Step 1: set $r_{nk} = p(z_n = k|x_n)$ for current θ using Bayes Rule
- Step 2: update θ using these r_{nk}s using MLE
- Step 3: go back to Step 1

At the end convert r_{nk} back to binary by setting the largest r_{nk} for point x_n to 1 and others to 0.

This is an example of the EM algorithm — a powerful procedure for model estimation with hidden/latent variables.
Iterative procedure

Alternate between estimating r_{nk} and computing parameters

- **Step 0**: initialize θ with some values (random or otherwise)
- **Step 1**: set $r_{nk} = p(z_n = k|x_n)$ for current θ using Bayes Rule
- **Step 2**: update θ using these r_{nk}s using MLE
- **Step 3**: go back to Step 1

At the end convert r_{nk} back to binary by setting the largest r_{nk} for point x_n to 1 and others to 0.

This is an example of the EM algorithm — a powerful procedure for model estimation with hidden/latent variables

Connection with K-means?
Iterative procedure

Alternate between estimating r_{nk} and computing parameters

- Step 0: initialize θ with some values (random or otherwise)
- Step 1: set $r_{nk} = p(z_n = k|x_n)$ for current θ using Bayes Rule
- Step 2: update θ using these r_{nk}s using MLE
- Step 3: go back to Step 1

At the end convert r_{nk} back to binary by setting the largest r_{nk} for point x_n to 1 and others to 0.

This is an example of the EM algorithm — a powerful procedure for model estimation with hidden/latent variables

Connection with K-means?

- GMMs provide probabilistic interpretation for K-means
- K-means is “hard” GMM or GMMs is “soft” K-means
- Posterior r_{nk} provides a probabilistic assignment for x_n to cluster k
GMMs vs. k-means
GMMs vs. k-means

Pros/Cons

- k-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering

- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute

- Both methods have a similar set of practical issues (having to select k, the distance, and the initialization)
Pros/Cons

- *k*-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute
GMMs vs. k-means

Pros/Cons

- k-means is a simpler, more straightforward method, but might not be as accurate because of deterministic clustering
- GMMs can be more accurate, as they model more information (soft clustering, variance), but can be more expensive to compute
- Both methods have a similar set of practical issues (having to select k, the distance, and the initialization)
• How GMMs differ from \(k \)-means (and why we care)
What you should know . . .

- How GMMs differ from k-means (and why we care)
- The difference between complete, incomplete data/likelihood
What you should know . . .

- How GMMs differ from k-means (and why we care)
- The difference between complete, incomplete data/likelihood
- How to learn the parameters in a GMM