
Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

1

Images and the Graphics Window
Prior to beginning the work with different parts of the libraries, we spent time
with classes. One reason for that was to provide some background when we
started this part of the work. For the information here and for part of next week,
almost everything works with classes. The first part of this will work with the
window in which we have been drawing stuff since day 1. Then we will move to
an image that loads a .jpg file. Then we move to video. All of these, the window,
the image, and the video fall within the same family tree of classes. What we
can do with the window, we can do with the image and the video. So, we are
doing the same thing three times.

The “Window”:
We have worked inside the “window” since day 1 when you were sent out to
draw your initials. We know how to size the window and how to get the value of
the width and height of the window:

void setup()
{
 size(200, 300);
 println(width);
 println(height);
}

The window has two fields or variables named width and height. Their default
values are 100 but we can set them to other values by calling the size()
function. Nothing new here…

Each element of the window is called a pixel (contraction of picture element 1).
The window declared above is 200 pixels wide and 300 pixels high so it has
60,000 pixels(200 X 300).
Somewhere in the memory of the computer is a sequence of transistors
delegated to store information about each pixels. Such areas are called buffers
– in this case, the video buffer. This buffer must be large enough to store the
data for 60,000 pixels. The data for each pixel is one int value. This int value
represents the alpha 2, red, blue, and green values for the pixel. To determine
the red, green, and blue value, the int value can be converted to its

1 So.. where does the ‘x’ come from???
2 This is the amount of translucence of the pixel.

Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

2

corresponding hex value: The example below shows these values for a blue
window:
void setup()
{
 size(200, 300);
 background(0, 0, 255);

 loadPixels();

 println(pixels.length);
 println(pixels[0]);
 println(hex(pixels[0]));
}

60000
-16776961
FF0000FF

Since the entire window is blue, each pixel has the values for blue. The
computer’s memory must store the value for blue for each pixel. We can get a
copy of this memory by calling the loadPixels() function. This copies the color
value in The computer’s memory for every pixel in the window into the array
named pixels. Then we can print any value in the array using the [] array
notation. In the code above, we print the value of the zeroth element of pixels.
What we see is a mysterious int value(-16776961). However, when we convert
this to the equivalent hex value things look more familiar. We see 8 hex digits.
If we group them in sets of two, we see:
 FF 00 00 FF
Which are the values of the alpha, red, green, and blue for the pixel in the upper
left corner of the window. The base 10 equivalent of FF is 255. So the settings
for the pixel in the upper left corner are:
 alpha == 255 or opaque
 red == 0 or no red
 green == 0 or no green
 blue == 255 for all on (100% blue)

Note the length of the pixel array – it has 60,000 elements.
Note that altering the array pixels does not directly alter the memory in the video
buffer. There is a way we can do that – but it comes later.

So we now know that the window has three variables:
width height pixels
and it has at least two functions that can work with those variables:
size() loadPixels()

Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

3

The “Image”:
We know how to create a PImage reference and reference it to a PImage object.
We also know how to display the image it references: Since PImage and the
window are in the same family tree of classes, we can do the same thing with a
PImage that we did to the window. We can access the PImage’s width and
length and we can get values stored in the image buffer copied into the image’s
pixel array. This code is essentially the same code that we looked at above:
PImage p;

void setup()
{
 size(400, 500);
 background(200, 200, 0);
 p = loadImage("jim.jpg");
 image(p, 20, 20);

 println(p.width);
 println(p.height);
 p. loadPixels();
 println(p.pixels.length);
 println(p.pixels[0]);
 println(hex(p.pixels[0]));
}

330
468

154440
-14334880
FF254460

Notice the following:
 The length of the array is the same as the product of the width and length:

 330 X 468 == 154440
 The functions that are called are the same BUT they have the period or dot

syntax that shows possession. We want the width and height of p so we
use p.----- as the syntax.

 Suppose we want to alter the actual data in the image (the window’s video
buffer)? Altering the pixel array does not directly alter the buffer. Remember,
the array is a copy of what is in the computer’s memory. If we want to do this,
we use the function:
 p.updatePixels();
which copies the contents of the pixel array into the buffer.

Another thing to notice is the size of the array p.pixels. It is 154440 elements
long. Each element contains an int. In Processing, a single int of information
stored in memory requires 32 transistors or 32 bits (binary digits) or 4 bytes (1
byte is composed of 8 bits). This means that the image in this example requires
 4 X 154440 bytes of memory or 617760 bytes of memory.

Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

4

Yet, if we look at the information displayed in the folder that show the size of the
image file we see:

The file requires 68,000 bytes of space on the disk. Why is the array about 10
times larger?
 617,760 vs 68,000
The reason is compression. The file is a jpg file – pronounced jay-peg. This
type of files is compressed. The compression allows us to store very large files
in smaller spaces and to transfer them (mail, fetch, . . .) much quicker. It is the
case that the compression used for .jpg files does cause some loss of
information. The rule is fairly simple. The more you compress the image (the
smaller you make the .jpg file) the more of the original information you lose.

Converting an (x, y) coordinate of the image into an array index for
the pixels array:
Shiffman does a very nice job explaining this in the book. See pages 262
through 264. The important thing to remember is that any (x, y) coordinate in
the window or image can be converted to an index of the pixels array for the
widow or image with this arithmetic:
 int index = (y * width) + x ; // for the window
 int index = (y * p.width) + x ; // for the image

BUT – if you are using the variables mouseX and mouseY to determine the (x,
y) coordinates, you MUST anchor the upper corner of the image at the (0, 0)
position of the window. Assuming the image is anchored at the (0, 0) position,
this code will use the mouse location to determine the index:
 int index = (mouseY * p.width) + mouseX ; // for the image

Here is how we can use this. The following shows Jim before and after a
fencing match:

Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

5

Here is the code that produced the changed image on the right:
void draw()
{
 image(p, 0, 0);
}

void mousePressed()
{
 p.loadPixels();
 int index = (mouseY * p.width) + mouseX;
 p.pixels[index] = color(255, 0, 0);
 p.pixels[index + 1] = color(255, 0, 0);
 p.pixels[index + p.width] = color(255, 0, 0);
 p.pixels[index + p.width + 1] = color(255, 0, 0);
 p.updatePixels();
}
This code uses the mouse location to find the index of the pixel that was clicked
and change four pixels to red. The pixels that are changed are :
 the pixel clicked

p.pixels[index] = color(255, 0, 0);
 the pixel that is the right neighbor

 p.pixels[index + 1] = color(255, 0, 0);

Class Notes CN19 Class PImage Page

Copyright Jim Roberts November 2012 Pittsburgh, PA 15221 All Rights Reserved

6

 the pixel immediately below the pixel that was clicked,
p.pixels[index + p.width] = color(255, 0, 0);

 its right neighbor
p.pixels[index + p.width + 1] = color(255, 0, 0);

Notice the purple code. This is how we “get to the next row.” By adding the
value of the width of the image, we move to the array element that has the color
for the pixel that is directly beneath the pixel represented by the [index] element.
This is important – you should work this out on paper if you do not understand
this.

You should note that in this example, the image has been moved up and to the
left so it is anchored at the (0, 0) coordinate of the window.

Shiffman’s examples in the book in chapter 15 work with these ideas. If you are
interested in exploring images, you should work with his examples. The course
web page has a link to the text’s web site where you can download code for all
of the examples in the book.

