
Notes from the Boards Set 17 Page

Copyright Jim Roberts March 2014 Pittsburgh, PA 15221 All Rights Reserved

1

The Class, String
A newer set of notes – Set #24 – examines the type char. Strings are
composed of individuals chars. You should read set Set #24 before
continuing to read this set of notes.

Refer to code Set17. The .pde file, String1 is discussed below. The folder
StringInput shows simple string input from the keyboard.

Processing is really Java. Processing is often referred to as a “super set “ of
Java because it is all of Java and more. Much of the java aspects are hidden
from view by the Processing IDE. We will look at some of the hidden stuff in a
future class meeting.

The main organizing structure of Java – and Processing – is the class. One
reason for using a class structure is the overall size and complexity of the
language. A way to consider this is to think about a library. It is composed of
books – lots and lots of books. But, what if every book in the library was pasted
together into a single large book? That’s right – one book. Think of the
ramifications:

• only one person could check it out at a time
• it would be difficult to find something specific
• its shear size and weight would make it very cumbersome and be difficult

to work with in any way
This same list and more are the reasons that Java is broken up into smaller units
or segments. These segments are called classes. The class list in the Java API
has over 2000 entries.

We have been programming inside a class since we wrote the first program on
day 1. We will look at this later.

Your have used classes in your earlier work. Sound and inmage required
classes. In this next look at a class, we will look at the String class of Java. Here
are the high points:

1. Anything inside quotation marks (“ “) is a String. Think of a string of
pearls or a string of beads and picture a string of characters. Here are
some examples of Strings:
 ““ the empty string
 “ “ the singlespace as a string
 “hello world“ which is one of the most famous programing Strings

2. Strings are NOT arrays. They are references to pieces of memory called
objects or specifically in this discussion, String objects.

3. The characters in a String object are indexed like arrays beginning at zero
(but they are not elements of an array).

4. There is a length field (variable) of the String object but it is private – we
cannot directly access it. To find the length of a String, we must use the
length() function.

Notes from the Boards Set 17 Page

Copyright Jim Roberts March 2014 Pittsburgh, PA 15221 All Rights Reserved

2

5. The last character in a String has an index of the String’s length()-1

The processing API lists seven String functions (In Java, functions have a
different name – they are called methods. sigh… functions, methods,
parameters, arguments, sigh again…).
that may be useful to you. The JAVA API has over 2000 functions (methods)
listed for the Java String class. All of these can be used by you in a Processing
program because Processing is really Java.

This compares and contrasts an array of char and a String;
Category Array of char String
declaration char [] c; String s;
one form of
initialization

char [] c = {'a', 'b'}; String s = "hello";

access println(c[0]); println(s.charAt(0));
Changing values c[0] = 'x'; Illegal for Strings
Size println(c.length); println(s.length()); note parens
Index of
beginning
character

println(c[0]); println(s.charAt(0));

Index of last
character

println(c[c.length - 1]); println(s.charAt(s.length() - 1));

Equality ==
compiles, runs, and does
not work properly

==
compiles, runs, and usually does not
work properly
if (s.equals(s1))
{

}
compiles, runs and works properly

One question that is asked is how can the toUpperCase() and toLowerCase()
functions be used. One way to use them is when we are dealing with user input
(discussed later in these notes). If we ask the use to type either yes or no as a
reply to a question the user can type any of the following to correctly respond:
yes Yes YES yEs yeS YeS no No NO nO
Any of these are proper inputs. Yet we do not want to have to type:
if (s1.equals("YES") ||
 s1.equals("yes") ||
 s1.equals("yES") ||
 s1.equals("yeS") ||
 s1.equals("YeS") ||
 s1.equals("yEs"))
 { . . .
 }

Notes from the Boards Set 17 Page

Copyright Jim Roberts March 2014 Pittsburgh, PA 15221 All Rights Reserved

3

This is silly. What if we were asking for the capital of the state of Florida? We
can use the case changing functions to simplify the code:
 if (s.toUpperCase().equals("YES"))
 {
 . . .
 }
The function s.toUpperCase() returns a new String and we can use the equals()
function with this returned String. This does look a bit bizarre, but there is a
simpler way to write this code:
 String temp = s.toUpperCase();
 if (temp.equals("YES"))
 {
 . . .
 }

Arrays of String References
We can build arrays of any type of data so we can build an array of Strings. The
syntax is the same:
 String [] labels = { "On", "Off", "In", "Out" };

String Input
We have used single character input for weeks. We have done this in the
keyPressed() function. The advantage of this is that the program does not
pause and wait for the input. If we have no animation ongoing when we want
input, a pause in the action is fine. But, if there is animation occurring, a pause
for input is not good.

Processing provides no other direct way to get user input and we do not want to
explore Java’s ways of getting user input so we will keep using the keyPressed()
function to do our work. This code, explained in detail on the next page can get
String input from the user:
void keyPressed()
{
 if (keyCode == DELETE || keyCode == BACKSPACE)
 {
 if (s.length() > 0)
 {
 s = s.substring(0, s.length()-1);
 }
 }
 else
 {
 s = s + key;
 }
 }

Notes from the Boards Set 17 Page

Copyright Jim Roberts March 2014 Pittsburgh, PA 15221 All Rights Reserved

4

Code Comments
void keyPressed()
{

if (keyCode == DELETE ||
 keyCode == BACKSPACE)

 {
 if (s.length() > 0)
 {

 s = s.substring
 (0, s.length()-1);
 }
 }

 else
 {
 s = s + key;
 }
}

If we assume the user might not
type things correctly and will want
to correct their input, we have to
account for the delete (Mac) or
backspace (Windows) keys. These
keys are CODED so we check the
keyCode value first.

If the user typed one of these
coded keys, we must first test the
String to insure it is not empty.
Our code will crash is we try to
delete a character from an empty
String.

We cannot alter a String so we
have to make an new String
without the last character. The
substring() function does this.
The details of the parameters are
discussed below.

If the user did not type the coded
keys tested for above, this
assumes they typed a character
and a new String is made from the
old String and the new letter using
the concatenation operator +

This code is considered NAÏVE because it does not deal with bad input such as
the up arrow or some other non-printing key expect the two that are tested for in
the first if – the [delete] and [backspace keys.

The parameters for the call of the substring() function need some explanation:
 s = s.substring (0, s.length()-1);

Notes from the Boards Set 17 Page

Copyright Jim Roberts March 2014 Pittsburgh, PA 15221 All Rights Reserved

5

The last character in the String has an index of :
 s.length()-1
If we want a new String created that does not have the last character, shouldn’t
we use the following for the second parameter:
 s = s.substring (0, s.length()-2);

This is one time that our logic fails us. When we specify a range of values, there
are many functions that include only the values UP TO but do not include the
second value in the range.

For example, if we call the random() function like this:
 float f = random(10, 20);
we get values between:
 10.0 and 19.9999999
We will never get 20.0 as a returned value.

When we set the size of the window:
 size(400, 400);
The actual size dimension of the window is 0-399 pixels wide and 0-399 pixels
high. If you do not believe us, try this code:
 size(400, 400);
 background(0);
 stroke(255, 0, 0);
 line(width 0, width, height);
and look very carefully at the right side of the window.

In the parameter list for substring():
 s = s.substring (0, s.length()-1);
The new String that is returned has character from index 0 up to BUT NOT
INCLUDING the character at the index of the second parameter.

The code in the folder StopAtReturn is a bit different. This code takes input until
you press the return or enter key. The user is asked a question. The answer is
Ohio – which is totally wrong but given the attention Ohio had had in the latter
stages of the previous presidential campaign, it seemed appropriate at the time
Jim wrote this.

We leave it to you to take it apart and see what is going on. Talk to one of us if
you need more explanation.

Feel free to use part or all of any of this code in your final projects.

