
Notes                         Task 4                                           Page  

Copyright Jim Roberts  July 2014  Pittsburgh PA 15221 

1 

PGSS – Programming Lab 
Task 4  Defining and Calling Your Own Functions, 

User Input, Scoring, and Timing 
 

Class Notes and Code selections 04, 07, and 08 will be very 
helpful to you in this set of tasks. 
 
You will continue working with the collision detection between 
your bouncing and wrapping figures.  One part of today’s task 
is to “clean” up your code by moving code segments into 
functions that are called by draw( ) into functions that you 
define.  These new functions will be called from draw( ). In 
the second part you are going to add user (player) control the 
wrapping figure with either keyboard input or mouse input.  
You will also add scoring and timing of the game.  The exact 
rules are up to you with one exception.  The wrapping figure 
is being controlled by the user.  If the user lets the wrapping 
figure go off screen, the user’s score is set back to zero. 
 
____ Start with either Task3 and make a copy of it named Task4. 
 
Currently you have all of the code that is involved in animation jammed 
into draw( ) and it is getting messy and difficult to read.  In Jim’s 
world of happy programmers, he prefers (make that DEMANDS) that 
draw( ) be coded as the table of contents to the entire program.  When 
you are done, your draw( ) function should resemble the following: 
void draw( ) 
{ 
  prepScreen( ); 
  moveBouncer( ); 
  drawBouncer( ); 
  moveWrapper( ); 
  drawWrappper( ); 
  checkForCollission( ); 
} 
Coded like this it is very easy for another programmer to quickly see 
what your program does.  It is very easy to find code that has an error 
or needs to be modified. 



Notes                         Task 4                                           Page  

Copyright Jim Roberts  July 2014  Pittsburgh PA 15221 

2 

____ Conceptually break your code into it specific, tasks.  Define 
function for each task and move the appropriate code into the function.  
The order of these functions is not important but it is easier for many 
novices to code the function right under draw( ).  Code one at a time 
and test it.  Fix the errors before coding the next one.  Code it right 
after draw( ).  This saves scrolling back and forth between draw( ) and 
your new function.  For this task, the argument lists for your functions 
(the stuff in the parentheses) will always be empty.  More on the 
arguments of functions next week. 
 
From an execution point of view, your newly organized program should 
run no differently that the original form of the program. 
 
Now on to the control.  The user will control the movement of the 
wrapping figure with either the mouse or the keyboard.  The choice is 
up to you and both will be demoed in class.  If you choose to let the 
user control the wrapper with the mouse, the user must not just drag 
the mouse to a collision.  The mouse must “influence” the motion of the 
wrapper.  Direct location of the wrapper with the mouse is not 
acceptable.  This also will be demoed in class. 
 
____ Add movement control for left, right, up and down movement.  
Wrapping must be allowed from to o bottom as well as bottom to top – 
this new.  Same for left and right. Wrapping must be allowed to occur 
from left to right AND from right to left.  This is also new and will 
take some serious thinking. 
 
____ Once the wrapping control is working, add a scoring variable and 
track the user’s prowess in driving the wrapper to a collision. 
 
____ Once the scoring is done add a timer to the game. Give the user 
30 seconds to play the game.   
 
 


