
Homework 5: PCF, FPC and MA
15-814: Types and Programming Languages

Fall 2017
Instructor: Karl Crary
TA: Yong Kiam Tan

Out: Oct 30, 2017 (07 pm)
Due: Nov 13, 2017 (11 pm)

Notes:

• Welcome to 15-814’s fifth homework assignment!

• Please email your work as a PDF file to yongkiat@cs.cmu.edu titled “15-814 Home-
work 5”. Your PDF should be named “<your-name>-hw5-sol.pdf”.

1 Halting Problem in PCF

Recall the language PCF:

τ ::= nat | τ → τ
e ::= x | z | s(e) | ifz(e; e;x.e) | λx:τ.e | e e | fix x : τ.e

Consider a term H : (nat→ nat)→ nat with the following properties:

1. For all f : nat → nat, either H f 7→∗ z or H f 7→∗ s(z) (i.e. H always terminates and
evaluates to either 0 or 1.)

2. H f 7→∗ z iff there exists n such that f z 7→∗ n (i.e. f z converges to a value.)

3. H f 7→∗ s(z) iff f z diverges.

Task 1 Prove that H is not definable in PCF.

(Hint) Suppose H exists. Define a term D (which may refer to H) such that D diverges iff
H D 7→∗ z (to make a term diverge, you can easily write an infinite loop.) Then consider to
what H D should evaluate.

This is a weaker version of the famous result that the Halting Problem is undecidable (in a
sufficiently powerful language). In the general statement, H accepts a representation of the
code of a function f instead of the function itself. This problem is also undecidable for PCF.

To make precise the idea of having H accept a representation of the code of a function, we use
a technique called Gödel-numbering, which assigns a unique natural number to α-equivalence
classes of terms. We will not go into details of how such a representation is computed, but
you can see PFPL 9.4 for more information. We will write peq for the Gödel number of an
expression e. Since natural numbers are available in PCF, this gives us a way of passing around
representations of expressions as values that can be inspected arbitrarily (as opposed to functions
themselves, which can only be “inspected” by application.)

1



We will also generalize the definition of H so that it accepts a natural number input as well as
the function. We will call this generalization H ′.

H ′ : nat→ nat→ nat has the following properties.

1. For all f : nat → nat and n : nat, either H ′ pfq n 7→∗ z or H ′ pfq n 7→∗ s(z) (i.e. H ′

always terminates and evaluates to either 0 or 1.)

2. H ′ pfq n 7→∗ z iff there exists m such that f n 7→∗ m (i.e. f n converges to a value.)

3. H ′ pfq n 7→∗ s(z) iff f n diverges.

Task 2 Prove that H ′ is not definable in PCF.

2 Defining Streams

In this section, we will define and manipulate infinite streams of natural numbers using recursive
types. We will be working in FPC extended with general recursion. As we saw in class, fix x : τ.e
can be encoded using recursive types, so this is just for convenience.

τ ::= · · · | α | τ → τ | τ × τ | τ + τ | µα.τ
e ::= · · · | fold[α.τ ](e) | unfold(e) | fix x : τ.e

Note that there is a type annotation [α.τ ] on fold. This follows the presentation in PFPL 20,
and is slightly different from the presentation we saw in class. The annotation is used in the
typing judgment to indicate the recursive type:

Γ ` e : [µα.τ/α]τ

Γ ` fold[α.τ ](e) : µα.τ
(Fold)

We will define the stream type in FPC as follows1:

stream , µα.unit→ nat× α

hd(e) , π1(unfold(e) ?)

tl(e) , π2(unfold(e) ?)

For example, we can define the constant stream ones , 1, 1, · · · as follows:

ones = fix x : stream. fold[α.unit→ nat× α](

unit→nat×stream︷ ︸︸ ︷
λ :unit.〈1, x〉 )︸ ︷︷ ︸

stream

We can check that it has the correct behavior:

hd(ones) ,π1(unfold(ones) ?)

1For those interested, its encoding as a coinductive type is stream , να.nat× α.

2



7→π1(unfold(fold[α.unit→ nat× α](λ :unit.〈1, ones〉)) ?)
7→π1(λ :unit.〈1, ones〉 ?)
7→π1(〈1, ones〉)
7→π1(〈1, fold[α.unit→ nat× α](λ :unit.〈1, ones〉)〉)
7→1

Notice that our fix is eager, so ones is eagerly evaluated in the second last evaluation step. A
similar derivation will show that tl(ones) essentially steps to itself (modulo eager evaluation):

tl(ones) 7→∗ fold[α.unit→ nat× α](λ :unit.〈1, ones〉)

For each of the following tasks, you should briefly explain the intuition behind your answer.
You must include the appropriate type annotation for fold whenever it is used in your
answer.

(Hint) (Optional) You may also find it helpful to annotate other parts of your code with their
types as we did in the definition of ones.

Task 3 Define the function fromLoop : (α → α × nat) → α → stream, which takes a value v
of type α and a function f of type α→ α× nat, successively applies f to v to get values of type
nat, and constructs a stream from these natural numbers.

Task 4 Use fromLoop to construct the following two streams.

1. Given a natural number k, a stream of natural numbers starting from k.

2. The stream of natural numbers.

Task 5 Define the function, map : (nat→ nat)→ stream→ stream, which takes a function f
and stream s and applies f to every element in the stream s.

Task 6 Define the function streamfix : (stream→ stream)→ stream, which takes a function
f and applies that successively to obtain a stream. (Carefully define this function considering
that we are working in the eager, call-by-value version of FPC.)

Task 7 Note that the stream of natural numbers has the special property that it can be obtained
by adding 1 to every element in the stream and then prepending 0 to the result. Use this property
to define the stream of natural numbers using map and streamfix.

Task 8 What would happen if you use streamfix with the identity function?

3 Monadization

Consider the following two languages, L1 and L2. Both languages extend PCF with primitives
for input and output. L2 maintains a separation between expressions e and commands m, while
L1 removes this distinction.

3



The syntax of L1 is as follows:

τ ::= nat | τ → τ | τ × τ
e ::= x | n | ifz(e; e;x.e) | λx:τ.e | e e | fix x : τ.e | 〈e, e〉 | π1e | π2e | input | output(e)

The syntax of L2 is as follows:

τ ::= nat | τ → τ | τ × τ | τ cmd

e ::= x | n | ifz(e; e;x.e) | λx:τ.e | e e | fix x : τ.e | 〈e, e〉 | π1e | π2e | cmd(m)
m ::= ret(e) | bnd(m;x.m) | force(e) | input | output(e)

We define a program transformation written ·. For any L1 expression e, the translation e should
be an L2 command. To define this transformation for expressions, we will have to first define
it for types and contexts, such that if Γ ` e : τ , then Γ ` e ∼: τ . We will define the type and
context transformations for you.

nat = nat

τ1 → τ2 = τ1 → τ2 cmd

τ1 × τ2 = τ1 × τ2
Γ, x : τ = Γ, x : τ

· = ·

The last statement implies that the empty context in L1 transforms to the empty context in L2.

You should assume the usual typing rules for all the constructs. The typing rules for input and
output(e) are given below. Intuitively, input models reading a natural number from the user,
while output(e) writes a natural number e, and then returns a success code.

Γ ` input : nat
(L1-Input)

Γ ` e : nat
Γ ` output(e) : nat

(L1-Output)

Γ ` input ∼: nat
(L2-Input)

Γ ` e : nat
Γ ` output(e) ∼: nat

(L2-Output)

Task 9 Define e inductively for each expression e in L1.

4


	Halting Problem in PCF
	Defining Streams
	Monadization

