
15-814 Homework 4

October 23, 2017

1 Abstraction

1.1 Abstraction Theorem

Task 1 Show that there are no expressions e of type ∀α.∀β.α→ β.

Solution: Suppose that there is an expression e of type ∀α.∀β.α → β. By the abstraction theorem,
we have e ∼ e : ∀α.∀β.α→ β.

Consider the relation R : 2 ↔ 2 = {(e1, e2) | e1 ∼= e2}, where ∼= is contextual equivalence1. In
particular, R is non-empty, and we have (tt, tt) ∈ R. Unfolding the definition of ∼ (and picking the
candidate), we get:

e[2] ∼ e[2] : ∀β.(2, 2, R)→ β

Next, consider the empty relation Q : 2↔ 2 = ∅. Expanding the definition of ∼ again, we get:

e[2][2] ∼ e[2][2] : (2, 2, R)→ (2, 2, Q)

From the observation above, we also have:

tt ∼ tt : (2, 2, R)

Therefore by definition of ∼,
e[2][2]tt ∼ e[2][2]tt : (2, 2, Q)

This yields a contradiction, because Q is the empty relation but we have:

(e[2][2]tt, e[2][2]tt) ∈ Q

Task 2 Show that for any expression e of type ∀α.α → α → α and any e1 : τ and e2 : τ , either
e[τ](e1)(e2) ∼ e1 : τ or e[τ](e1)(e2) ∼ e2 : τ .

Solution: By the abstraction theorem, we have e ∼ e : ∀α.α → α → α. Consider the relation
R : τ ↔ τ = {(x, y) | x ∼ e1 ∨ x ∼ e2}, we write Rτ = (τ, τ, R) for the corresponding candidate.
Expanding the definition of ∼, we get:

e[τ] ∼ e[τ] : Rτ → Rτ → Rτ

From the abstraction theorem, we also have e1 ∼ e1 : τ and e2 ∼ e2 : τ . Therefore, by definition of ∼,
we have e1 ∼ e1 : Rτ and e2 ∼ e2 : Rτ . This yields:

e[τ](e1)(e2) ∼ e[τ](e1)(e2) : Rτ

Expanding Rτ , we get e[τ](e1)(e2) ∼ e1 ∨ e[τ](e1)(e2) ∼ e2.

1This is just to make R admissible, see PFPL 48.

1

1.2 Data Abstraction

Task 3 State the abstract type of the signature queue.

Solution:
Curried:

∀β.(∀α.α→ (int× α→ α)→ (α→ (unit + int× α))→ β)→ β

Uncurried:

∀β.(∀α.α× (int× α→ α)× (α→ (unit + int× α))→ β)→ β

Alternatively, with existential types:

∃α.α× (int× α→ α)× (α→ (unit + int× α))

Task 4 State an admissible relation R : int list ↔ int list × int list which is closed under all
operations of the signature.

Solution: Intuitively, LQ keeps a list for its queue implementation, and in LLQ, we can recover this
list by reversing the second queue and appending it to the first queue at any time during the queue’s
operation.

R : int list↔ int list× int list = {(l, (l1, l2)) | l ∼= append l1 (rev l2)}

Note that ∼= is (1) closed under evaluation, (2) an equivalence relation, and (3) a congruence. Define the
candidate Q = (int list, int list × int list, R) for the next parts of this section. The operations
of LQ are written with subscript 1 while those of LLQ are written with subscript 2. I ignore the typing
derivations for ∼, but all of these parts are also obviously well-typed.

Task 5 Prove that the relation R you defined above is closed under emp.

Solution: We need to show emp1 ∼ emp2 : Q, i.e. that [] R ([], []). We have:

append [] (rev []) ∼= append [] ([]) ∼= []

.

Task 6 Prove that the relation R you defined above is closed under ins.

Solution: We need to show ins1 ∼ ins2 : (int × Q → Q). Consider inputs (n, l) ∼ (n′, (l1, l2)) :
int×Q. By definition of the ins functions, and ∼ for function types, we need to show:

ins1 (n, l) R ins2 (n′, (l1, l2))

append l [n] ∼= append l1 (rev(n′ :: l2))

Note that the definition of ∼ for products implies n ∼ n′, and so we have n ∼= n′. Therefore, by
congruence and transitivity, we only need to show:

append l [n] ∼= append l1 (rev(n :: l2))

Observe that:
rev(n :: l2) ∼= append (rev l2) [n]

and so by congruence and associativity of append:

append l1 (rev(n :: l2)) ∼= append (append l1 (rev l2)) [n] ∼= append l [n]

The latter equivalence holds by congruence and the assumption that the input queues are related at
Q, i.e. :

append l1 (rev l2) ∼= l

2

Task 7 Prove that the relation R you defined above is closed under rem.

Solution: We need to show rem1 ∼ rem2 : (Q→ (unit + int×Q)). Consider inputs l ∼ (l1, l2) : Q.
Unfolding definitions as before, we need to show:

rem1l ∼= rem2(l1, l2)

We follow the case analysis on l in rem1.

Case []: Since l and (l1, l2) are related at Q, we have:

append l1 (rev l2) ∼= []

Thus, (l1, l2) must both evaluate to []. Therefore, both rem1 and rem2 evaluate to NONE, which is
contextually equivalent to itself.

Case (x :: xs): rem1 evaluates to SOME(x, xs). By assumption that the inputs are related at Q,
we also have:

append l1 (rev l2) ∼= (x :: xs)

Now we may case analyze on l1:

Subcase l1 ∼= []. We have
append l1 (rev l2) ∼= rev l2 ∼= x :: xs

Therefore, we have

rem2(l1, l2) ∼= rem2(rev l2, []) ∼= rem2(x :: xs, []) ∼= SOME(x, (xs, []))

Now we have xs ∼= append xs (rev []), and therefore, SOME(x, xs) ∼= SOME(x, (xs, [])) so we are
done.

Task 8 Briefly compare the two implementations of queue in terms of time efficiency. Are there
situations where you would prefer one over the other?

Solution: The second queue implementation has amortized constant time complexity but is poten-
tially slow on some calls when it needs to reverse the second list. The first implementation is linear
in the size of the list for each insertion, but is constant time for removal. We would use the second
implementation for most purposes, but may resort to the first if we want to have more predictable
behavior.

2 Free Theorems

Task 9 Consider a function h : ∀α.∀β.α list×β list→ (α×β) list (with the type of the standard
zip function). Consider functions a : τA → τ ′A and b : τB → τ ′B. Let a∗ (similarly for b∗) denote the
map of a over a list of type τA, i.e. a∗ takes a list l as argument and applies a to every element of l.
Also, let a× b : τA × τB → τ ′A × τ ′B be the function where (a× b)〈e1, e2〉 = 〈a e1, b e2〉. Prove that for
all e : τA list× τB list:

(a× b)∗(h[τA][τB] e) ∼ h[τ ′A][τ ′B]((a∗ × b∗) e) : (τ ′A × τ ′B) list

Solution: Let P = (τA, τ
′
A, a), Q = (τB , τ

′
B , b), where we view the functions a, b as relations. By the

abstraction theorem,
h ∼ h : ∀α.∀β.α list× β list→ (α× β) list

Expanding the definition of ∼, we have:

h[τA][τB] ∼ h[τ ′A][τ ′B] : P list×Q list→ (P ×Q) list

Let e : τA list × τB list, then we know2 that π1e ∼ a∗(π1e) : P list and π2e ∼ b∗(π2e) : Q list.

2As we saw in class, mapping a function a over a list l gives us l ∼ a∗l : P .

3

Therefore, since (a∗ × b∗) applies to a∗, b∗ to the left and right projections of e respectively, we also
have:

e ∼ ((a∗ × b∗) e) : P list×Q list

Expanding the definition of ∼ again,

h[τA][τB]e ∼ h[τ ′A][τ ′B]((a∗ × b∗) e) : (P ×Q) list

Now, by expanding the definition of (P ×Q) list, we have that the two lists are element-wise related
at P × Q. In other words, for each element (e1, e2) of the left list, its corresponding element in the
right list is (a e1, b e2). Therefore, by mapping a× b over the left list, we have3:

(a× b)∗(h[τA][τB] e) ∼ h[τ ′A][τ ′B]((a∗ × b∗) e) : (τ ′A × τ ′B) list

3One could also argue this more precisely by expanding out the definition of ∼ for lists.

4

	Abstraction
	Abstraction Theorem
	Data Abstraction

	Free Theorems

