
Homework 3: Products, Sums, and Church Encodings
15-814: Types and Programming Languages

Fall 2017
Instructor: Karl Crary
TA: Yong Kiam Tan

Out: Oct 09, 2017 (05 pm)
Due: Oct 16, 2017 (11 pm)

Notes:

• Welcome to 15-814’s third homework assignment!

• Please email your work as a PDF file to yongkiat@cs.cmu.edu titled “15-814 Home-
work 3”. Your PDF should be named “<your-name>-hw3-sol.pdf”.

• This is a short homework and it is due in one week.

1 Fibonacci Numbers

The Fibonacci sequence, 0, 1, 1, 2, 3, 5, · · · may be generated as follows:

f(n) =

{
n if n ≤ 1

f(n− 1) + f(n− 2) otherwise

In class, we saw a general strategy for implementing well-founded recursion using n-ply unfolded
recursive definitions. For many problems, one can also get by without that technique. For
example, it is well known that the Fibonacci numbers can be computed by maintaining only the
two preceding values in the sequence.

Task 1 Define the function f in the language LNS from Homework 2, without using well-
founded recursion. You will want to make use of pairs.

Task 2 Define the function f in System T, using well-founded recursion.

2 Isomorphisms

In class, we saw that void is the unit for sums, and unit is the unit for products. This was made
more precise by the notion of an isomorphism between types. In this section, we shall similarly
define functions between two types1 For the base language, we will use the simply-typed lambda
calculus extended with products and sums. Its syntax is given as follows, and we shall use eager
semantics for products and sums following PFPL 10-11.

τ ::= unit | void | τ → τ | τ × τ | τ + τ
e ::= ? | abort[τ](e) | λx:τ.e | e e | 〈e, e〉 | π1e | π2e | inl(e) | inr(e) | case e {x.e;x.e}

1Some of these will not actually be isomorphisms.

1

Task 3 For each of the following pairs of types τ1, τ2, define expressions f, g with types f : τ1 →
τ2 and g : τ2 → τ1 respectively.

1. (Currying) τ1 → (τ2 → τ3), (τ1 × τ2)→ τ3

2. (Permutation) (τ1 + τ2) + τ3, (τ2 + τ3) + τ1

3. (Distributivity) τ × (τ1 + τ2), (τ × τ1) + (τ × τ2)

4. (De Morgan) (τ1 + τ2)→ void, (τ1 → void)× (τ2 → void)

5. (Soundness) τ × (τ → void), void

6. (Triple Negation) ((τ → void)→ void)→ void, τ → void

3 Church Encodings

Recall the syntax of System F.

τ ::= α | τ → τ | ∀α.τ
e ::= λx:τ.e | ee | Λα.e | e[τ]

As we saw in class, using the few type constructors available in System F, it is possible to define
types with the same behavior as almost any of the types we have studied. These are called
Church encodings and were originally defined by Alonzo Church in the untyped λ-calculus.

Task 4 Lists can either be Nil or Cons of an element and a list. In ML-style, we write

τ list , Nil | Cons of τ × τ list

Define the following types and functions in System F. As usual, briefly explain (in 1-2 lines)
the intuition behind your answer.

1. Define τ list in System F.

2. Define nilτ : τ list, the empty list.

3. Give the representation of the list [a1, a2, . . . , an] where ai : τ .

4. Define consτ : τ → τ list→ τ list.

5. Define listrec(l, e0, x.y.e1) : ρ (analogous to natrec in System T). Its static and dynamic
semantics are given below. Here, x is bound to the head of the list, and y is bound to the
result of the computation on the tail of the list.

Γ ` l : τ list Γ ` e0 : ρ Γ, x : τ, y : ρ ` e1 : ρ

Γ ` listrec(l, e0, x.y.e1) : ρ
(ListRec)

listrec(nil, e0, x.y.e1) 7→ e0
(ListRec-Nil)

listrec(cons(h, t), e0, x.y.e1) 7→ [h, listrec(t, e0, x.y.e1)/x, y]e1
(ListRec-S)

6. Define the function append : τ list → τ list → τ list, which takes two lists and
appends the second list at the end of the first. (You can define this by working it out with
listrec, but there is a cleaner, more elegant solution.)

2

	Fibonacci Numbers
	Isomorphisms
	Church Encodings

