15-814 Homework 3 Solutions

October 25, 2017

Task 1 Define the function \(f \) in the language LNS from Homework 2, without using well-founded recursion. You will want to make use of pairs.

Solution: We compute for each \(n \) the pair \(\langle f(n), f(n+1) \rangle \) and take the first projection. We assume that the usual + has been defined, e.g. see Homework 2’s solution notes.

\[
 f = \lambda n : \text{nat}. \pi_1 \text{natrec}(n; \langle z, s(z) \rangle; x.y. \langle \pi_2 y, \pi_1 y + \pi_2 y \rangle)
\]

Task 2 Define the function \(f \) in System T, using well-founded recursion.

Solution: We first define the function \(F \) for which we want to perform a fixed-point computation. We again assume that ifz, \(\leq \), \(-\), \(+\) have been defined following Homework 2.

\[
 F = \lambda f : \text{nat} \rightarrow \text{nat}. \lambda n : \text{nat}. \text{ifz} (n \leq s(z)) \ n \ (f(n - s(s(z))) + f(n - s(z)))
\]

It is useful to note its type \(F : (\text{nat} \rightarrow \text{nat}) \rightarrow (\text{nat} \rightarrow \text{nat}) \). A fixed point of \(F \) would be an \(x : \text{nat} \rightarrow \text{nat} \) such that \(Fx = x \). Next, we define the n-fold composition of a function with itself.

\[
 \text{ncompose} = \lambda f : (\text{nat} \rightarrow \text{nat}) \rightarrow (\text{nat} \rightarrow \text{nat}). \lambda n : \text{nat}. \text{natrec}(n; \lambda m : \text{nat}. m; x.y.f y)
\]

Finally, we put the two together to define what we want.

\[
 f = \lambda n : \text{nat}. \text{ncompose} F n n
\]

To get a better understanding of what is going on, let us manually unfold \(f \). (I write \(\equiv \) here because some of these steps are not in correct evaluation order). Notice that composing \(F \) with itself 3 times is sufficient, because we always decrease \(n \) by at least 1 in each recursive call.

\[
 f 3 \equiv \text{ncompose} F 3 3 \\
 \equiv \text{natrec}(3; \lambda m : \text{nat}. m; x.y. F y) 3 \\
 \equiv F (F (F (\lambda m : \text{nat}. m))) 3 \\
 \equiv (F^3 \text{id}) 3 \\
 \equiv \text{ifz} (3 \leq 1) 2 ((F^2 \text{id}) (3 - 2) + (F^2 \text{id}) (3 - 1)) \\
 \equiv (F^2 \text{id}) 1 + (F^2 \text{id}) 2 \\
 \equiv (F^2 \text{id}) 1 + (F \text{id}) 0 + (F \text{id}) 1 \\
 \equiv 2
\]

Essentially, the n-fold composition acts like a “clock” or “fuel” for \(F \) that is decremented on each recursive call. This ensures well-foundedness because we cannot decrement the clock forever.
Task 3 For each of the following pairs of types τ_1, τ_2, define expressions f, g with types $f : \tau_1 \rightarrow \tau_2$ and $g : \tau_2 \rightarrow \tau_1$ respectively.

Solution: I write $\lambda a : \tau, b : \tau'.e$ as shorthand for $\lambda a : \tau.\lambda b : \tau'.e$. Note that we can also understand these using the Curry-Howard isomorphism. For example, (Triple Negation) corresponds to the tautology $\neg \neg p \iff p$ that was mentioned in class.

1. (Currying) $\tau_1 \rightarrow (\tau_2 \rightarrow \tau_3), (\tau_1 \times \tau_2) \rightarrow \tau_3$

 \[f = \lambda x : \tau_1 \rightarrow (\tau_2 \rightarrow \tau_3), p : \tau_1 \times \tau_2. x (\pi_1 p) (\pi_2 p) \]

 \[g = \lambda x : \tau_1 \times \tau_2 \rightarrow \tau_3, \lambda p_1 : \tau_1, p_2 : \tau_2. (p_1; p_2) \]

2. (Permutation) $(\tau_1 + \tau_2) + \tau_3, (\tau_2 + \tau_3) + \tau_1$

 \[f = \lambda x : (\tau_1 + \tau_2) + \tau_3. \text{case } x \{ y. \text{case } y \{ \text{inr}(l); \text{inl}(r)); y. \text{inl}(\text{inr}(y)) \} \}

 Similarly for g.

3. (Distributivity) $\tau \times (\tau_1 + \tau_2), (\tau \times \tau_1) + (\tau \times \tau_2)$

 \[f = \lambda x : \tau \times (\tau_1 + \tau_2). \text{case } \pi_2 x \{ y. \text{inl}(\langle \pi_1 x, y \rangle); y. \text{inr}(\langle \pi_1 x, y \rangle) \}

 \[g = \lambda x : (\tau \times \tau_1) + (\tau \times \tau_2). \text{case } x \{ y. \text{inl}(\langle \pi_2 y \rangle); y. \text{inl}(\langle \pi_2 y \rangle) \}

4. (De Morgan) $(\tau_1 + \tau_2) \rightarrow \text{void}, (\tau_1 \rightarrow \text{void}) \times (\tau_2 \rightarrow \text{void})$

 \[f = \lambda x : (\tau_1 + \tau_2) \rightarrow \text{void}. (\lambda y : \tau_1. \text{inl}(y), \lambda y : \tau_2. \text{inr}(y)) \]

 \[g = \lambda x : (\tau_1 \rightarrow \text{void}) \times (\tau_2 \rightarrow \text{void}). \text{case } y \{ z. \pi_1 x z; z. \pi_2 x z \}

5. (Soundness) $\tau \times (\tau \rightarrow \text{void}), \text{void}$

 \[f = \lambda x : \tau \times (\tau \rightarrow \text{void}). (\pi_2 x) (\pi_1 x) \]

 \[g = \lambda x : \text{void}. \text{abort}[(\tau \times (\tau \rightarrow \text{void)}](x) \]

6. (Triple Negation) $((\tau \rightarrow \text{void}) \rightarrow \text{void}) \rightarrow \text{void}, \tau \rightarrow \text{void}$

 \[f = \lambda x : ((\tau \rightarrow \text{void}) \rightarrow \text{void}) \rightarrow \text{void}. y : \tau. x (\lambda v : \tau \rightarrow \text{void}. v y) \]

 \[g = \lambda x : \tau \rightarrow \text{void}. y : ((\tau \rightarrow \text{void}) \rightarrow \text{void}). y x \]

Task 4 Lists can either be Nil or Cons of an element and a list. In ML-style, we write

\[\tau \text{ list } \triangleq \text{Nil } \mid \text{Cons of } \tau \times \tau \text{ list} \]

Define the following types and functions in System F. As usual, briefly explain (in 1-2 lines) the intuition behind your answer:

1. Define $\tau \text{ list }$ in System F.

2. Define $\text{nil } : \tau \text{ list }$, the empty list.

3. Give the representation of the list $[a_1, a_2, \ldots, a_n]$ where $a_i : \tau$.

4. Define $\text{cons } : \tau \rightarrow \tau \text{ list } \rightarrow \tau \text{ list }$.

2
5. Define listrec\((l, e_0, x.y.e_1) : \rho\) (analogous to natrec in System T). Its static and dynamic semantics are given below. Here, x is bound to the head of the list, and y is bound to the result of the computation on the tail of the list.

\[
\begin{align*}
\Gamma \vdash l : \tau \text{ list} & \quad \Gamma \vdash e_0 : \rho & \quad \Gamma, x : \tau, y : \rho \vdash e_1 : \rho \\
\hline
\Gamma \vdash \text{listrec}(l, e_0, x.y.e_1) : \rho & \quad \text{(LISTREC)}
\end{align*}
\]

\[
\text{listrec}(\text{nil}, e_0, x.y.e_1) \mapsto e_0 \quad \text{(LISTREC-NIL)}
\]

\[
\text{listrec}(\text{cons}(h, t), e_0, x.y.e_1) \mapsto [h, \text{listrec}(t, e_0, x.y.e_1)/x, y]e_1 \quad \text{(LISTREC-S)}
\]

6. Define the function append \((\tau \text{ list} \to \tau \text{ list} \to \tau \text{ list})\), which takes two lists and appends the second list at the end of the first. (You can define this by working it out with listrec, but there is a cleaner, more elegant solution.)

Solution:

1. Note the similarity between this and natural numbers (what if $\tau = \text{unit}$?)

 \[\tau \text{ list} = \forall \alpha. \alpha \to (\tau \to \alpha \to \alpha) \to \alpha\]

2.

 \[\text{nil}_\tau : \tau \text{ list} = \Lambda \alpha. \lambda m : \alpha. \lambda c : \tau \to \alpha \to \alpha.m\]

3.

 \[[a_1, a_2, \ldots, a_n] = \Lambda \alpha. \lambda m : \alpha. \lambda c : \tau \to \alpha \to \alpha.c\ a_1(c\ a_2(\ldots (c\ a_n\ m))))\]

4.

 \[\text{cons}_\tau : \tau \to \tau \text{ list} \to \tau \text{ list} = \lambda h : \tau. \lambda t : \tau \text{ list}. \Lambda \alpha. \lambda m : \alpha. \lambda c : \tau \to \alpha \to \alpha.c\ h\ (t[\alpha]\ m\ c)\]

5.

 \[\text{listrec}(l : \tau \text{ list}, e_0, x.y.e_1) : \rho = l[\rho]\ e_0\ (\lambda x : \tau. \lambda y : \rho.e_1)\]

6.

 \[\text{append} : \tau \text{ list} \to \tau \text{ list} \to \tau \text{ list} = \lambda x : \tau \text{ list}. \lambda y : \tau \text{ list}. \Lambda \alpha. \lambda m : \alpha. \lambda c : \tau \to \alpha \to \alpha.x[\alpha]\ (y[\alpha]\ m\ c)\ c\]