
Homework 2: Principles of System T
15-814: Types and Programming Languages

Fall 2017
Instructor: Karl Crary
TA: Yong Kiam Tan

Out: Sep 25, 2017 (5 pm)
Due: Oct 9, 2017 (11 pm)

Notes:

• Welcome to 15-814’s second homework assignment!

• Please email your work as a PDF file to yongkiat@cs.cmu.edu titled “15-814 Home-
work 2”. Your PDF should be named “<your-name>-hw2-sol.pdf”.

1 Termination in System T

Gödel’s System T, presented in Appendix A as we defined it in class, has the valuable property
that any program we can write will evaluate to a value in a finite number of steps. In this section,
we will look at how to prove this fact using Tait’s reducibility method, which is an instance of
the ubiquitous technique of logical relations. The theorem we want to prove is the following:

Theorem 1 (Normalization) If · ` e : τ , then there exists v val such that e 7→∗ v.

Here, 7→∗ is the reflexive transitive closure of the step judgment 7→. We might hope to prove this
theorem directly by induction on the typing judgment. However, this approach is insufficient.
The case for the application rule (App) is demonstrative.

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1e2 : τ
(App)

In this case, our induction hypotheses tell us that e1 7→∗ v1 and e2 7→∗ v2 for some values v1 and
v2. By preservation and the appropriate canonical forms lemma, we know that v1 = λx : τ ′.e′

for some e′. It follows that e1e2 7→∗ v1e2 7→ [e2/x]e′. Unfortunately, we are now stuck, as we
have no information about the behavior of [e2/x]e′.

We will solve this by generalizing and proving a stronger statement which gives us more infor-
mation in the induction hypothesis. Specifically, we will define a reducibility predicate Redτ (e)
and prove the following theorem.

Theorem 2 If · ` e : τ , then Redτ (e).

Since we’ll define Redτ such that Redτ (e) implies the existence of v val with e 7→∗ v, this will
give normalization as a special case. The definition will go by structural induction on the type τ ,
which makes Redτ what is called a logical relation. (In particular, it is a unary logical relation;
we will encounter binary logical relations, such as logical equivalence e ∼τ e′, later in the course.)
Actually, we will prove an even more general theorem in order to account for open terms; to
state it concisely, we first want to define some notation for substitutions.

1

Definition 1 A substitution γ = {x1 ↪→ e1, . . . , xn ↪→ en} is a finite mapping from variables to
terms. Given an expression e, we write γ(e) for the expression [e1, . . . , en/x1, . . . , xn]e, that is,
the simultaneous substitution in e of each expression ei for its corresponding variable xi. For γ
as above, we define γ Γ to mean that Γ = x1 : τ1, . . . , xn : τn for some τ1, . . . , τn such that
Redτi(ei) holds for 1 ≤ i ≤ n.

This is the theorem we will actually prove:

Theorem 3 If Γ ` e : τ and γ Γ then Redτ (γ(e)).

Theorem 2 (and hence Theorem 1) follows by the special case where Γ = · and γ = 〈〉. Finally,
we define the predicate Redτ by structural induction on τ :

• Redτ1→τ2(e) holds if

1. · ` e : τ1 → τ2,

2. there exists v val such that e 7→∗ v, and

3. for any e′ such that Redτ1(e′), we have Redτ2(e e′).

• Rednat(e) holds if

1. · ` e : nat,

2. there exists v val such that e 7→∗ v, and

3. v ↓, where v ↓ is a judgment defined by

z ↓ (↓-Z)
e 7→∗ v v val v ↓

s(e) ↓
(↓-S)

Note that Redτ1→τ2(e) is defined in terms of Red at the structurally smaller types τ1 and τ2, so
the definition is well-founded. To get you started on the proof, and to see how this definition
succeeds where the previous attempt failed, here is the (App) case:

• Case (App): We have Γ ` e1 e2 : τ with Γ ` e1 : τ ′ → τ and Γ ` e2 : τ ′ for some τ ′. Per the
theorem statement, we assume we are given γ Γ and want to prove that Redτ (γ(e1 e2)).
By definition of substitution, we have that γ(e1 e2) = γ(e1) γ(e2). Moreover, our induction
hypotheses tell us that Redτ ′→τ (γ(e1)) and Redτ ′(γ(e2)). From condition 3 in the definition
of Redτ ′→τ , we know that for any e′ with Redτ ′(e′) we have Redτ (γ(e1) e′). Taking
e′ = γ(e2) thus gives our goal.

With the right definition Red in hand, the (App) case follows almost trivially. On the other
hand, the (Lam) case becomes more difficult. In general, though, proving the theorem is the
easy part of a logical relations argument – the hard part is choosing the right theorem to prove.

To complete the proof, you’ll need the following lemma.

Lemma 1 (Closure under Head Expansion) If Redτ (e′) and · ` e : τ and e 7→ e′, then
Redτ (e).

Task 1 Prove closure under head expansion.

2

With the help of type preservation, closure under head expansion extends to apply when e 7→∗ e′
in multiple steps (you may use this without proof).

Task 2 Prove the remaining cases of Theorem 3. You may state (without proof) lemmas about
substitution, but be sure to check that they are actually true.

2 Programming in System T

Consider an extension of Gödel’s T with products. We will call this language LNS.

τ ::= · · · | τ1 × τ2
e ::= · · · | 〈e1, e2〉 | π1e | π2e

(We will use eager dynamics for products, following PFPL 10, and the definitions given in class.)

First we’ll get some practice working with nats. You may find it helpful to break large definitions
into intermediate ones, give them names, and refer to them in the larger definition.

Task 3 For each definition below, briefly explain (in 1-2 lines) the intuition behind your answer.

1. Define mult, where mult m n 7→∗ m ∗ n.1

2. Define minus, where minus m n 7→∗ m− n if m > n. It should produce 0 otherwise.

3. Define leq, where leq m n 7→∗ s(z) if m ≤ n and leq m n 7→∗ z otherwise.

4. Define mod, where mod m n = m mod n. You may pick appropriate defaults when n = 0.

In class, we briefly mentioned iteration and primitive recursion in relation to the operator
natrec. In this context, natrec in LNS corresponds to primitive recursion and may be called
the recursor. We also defined an alternate form rec(e; e0; y.e1) which corresponds to iteration.

e 7→ e′

rec(e; e0; y.e1) 7→ rec(e′; e0; y.e1)

rec(z; e0; y.e1) 7→ e0

rec(s(e); e0; y.e1) 7→ [rec(e; e0; y.e1)/y]e1

It is simple to define rec(e; e0;x.e1) in terms of natrec(e; e0;x.y.e1); simply ignore x. Using
the other constructs of LNS, it is also possible to define natrec in terms of rec.

Task 4 Define natrec(e; e0;x.y.e1) in terms of rec. Briefly explain the intuition behind your
answer.

1We will write n to indicate the representation of a natural number n as an element of type nat.

3

A System T

A.1 Statics

Γ, x : τ ` x : τ
(Hyp)

Γ ` z : nat
(Z)

Γ ` e : nat
Γ ` s(e) : nat

(S)

Γ ` e : nat Γ ` e0 : τ Γ, x : nat, y : τ ` e1 : τ

Γ ` natrec(e; e0;x.y.e1) : τ
(Rec)

Γ, x : τ ′ ` e : τ

Γ ` λx:τ ′.e : τ ′ → τ
(Lam)

Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1e2 : τ
(App)

A.2 Dynamics

z val
(Z-V)

s(e) val
(S-V) e 7→ e′

natrec(e; e0;x.y.e1) 7→ natrec(e′; e0;x.y.e1)
(Rec-S)

natrec(z; e0;x.y.e1) 7→ e0
(Rec-IZ)

natrec(s(e); e0;x.y.e1) 7→ [e, natrec(e; e0;x.y.e1)/x, y]e1
(Rec-IS)

λx:τ.e val
(Lam-V)

e1 7→ e′1
e1e2 7→ e′1e2

(App-S)
(λx:τ.e)e′ 7→ [e′/x]e

(App-I)

4

	Termination in System T
	Programming in System T
	System T
	Statics
	Dynamics

