
15-814 Homework 2 Solutions

October 10, 2017

Task 1 Prove closure under head expansion.

Solution: We proceed by structural induction on the type τ .

Case τ = nat: We need to show the 3 conditions for Rednat(e) to hold.

1. · ` e : nat holds by assumption.

2. We know Rednat(e
′), i.e. there exists v val such that e′ 7→∗ v. Therefore, since we assumed

e 7→ e′, we also have e 7→∗ v by transitivity and definition of 7→∗.

3. This follows directly from the Rednat(e
′) assumption, since we are considering the same v.

Case τ = τ1 → τ2: We need to show the 3 conditions for Redτ1→τ2(e) to hold.

1. · ` e : τ1 → τ2 holds by assumption.

2. We know Redτ1→τ2(e′), i.e. there exists v val such that e′ 7→∗ v. Therefore, since we
assumed e 7→ e′, we also have e 7→∗ v by definition of 7→∗.

3. Consider e′′ such that Redτ1(e′′). We need to show Redτ2(e e′′). Since τ2 is structurally
smaller than τ1 → τ2, we do this by showing the 3 premises of the inductive hypothesis.

(a) By the third condition of Redτ1→τ2(e′), we have Redτ2(e′ e′′).

(b) We have · ` e : τ1 → τ2 and · ` e′′ : τ1 (by assumptions). Therefore, · ` e e′′ : τ2 by
(App).

(c) Since e 7→ e′, we have e e′′ 7→ e′ e′′ by (App-S).

Therefore, Redτ2(e e′′) by I.H..

Task 2 Prove the remaining cases of Theorem 3. You may state (without proof) lemmas about
substitution, but be sure to check that they are actually true.

Solution: In the proof, we will use ◦ to denote composition of finite maps. For example, if
γ = {x1 ↪→ e1, . . . , xn ↪→ en}, γ′ = {x′1 ↪→ e′1, . . . , x

′
n ↪→ e′n} then γ′ ◦ γ = {x′1 ↪→ e′1, . . . , x

′
n ↪→

e′n, x1 ↪→ e1, . . . , xn ↪→ en}. We implicitly assume that the variable names mapped by γ, γ′ do
not clash. Furthermore, we will use (without proof) the congruence of 7→∗ with the congruence
rules, and the following lemmas1:

Lemma 1 (Simultaneous substitution decomposition) If γ 
 Γ, then γ only substitutes
closed terms for variables, and in particular, composed finite maps containing γ can be decom-
posed: (γ′ ◦ γ)(e) = γ′(γ(e))

1These were my original solutions, but I think that some of my uses of the substitution lemma were unneces-
sary, see footnote in (Lam) case. The decomposition lemma is probably too much detail here, but observe that you
cannot, in general, conclude (γ′◦γ)e = γ′(γ(e)) without further assumptions. For example, {x ↪→ y, y ↪→ x}y = x
but {x ↪→ y}({y ↪→ x}y) = y.

1



Lemma 2 (Substitution) If γ 
 Γ, and Γ,Γ′ ` e : τ , then γ only substitutes closed terms for
variables, and in particular, Γ′ ` γ(e) : τ .

Proof: The proof proceeds by induction on Γ ` e : τ (the case for (App) is omitted). (I write
the form of Γ ` e : τ followed by the rulename for each relevant case). Note that by definition
of Redτ , whenever Redτ (e), then · ` e : τ . This also implies that e is a closed term with no free
variables.

Case Γ, x : τ ` x : τ (Hyp): By assumption, we have γ 
 Γ, x : τ , i.e. γ = {..., x ↪→ e}
by definition of 
. In particular, we have Redτ (e), but e = γ(x) by definition of substitution on
variable x so we are done.

Case Γ ` z : nat (Z): We have γ(z) = z, so we show Rednat(z).

1. · ` z : nat by (Z).

2. z val by (Z-V) and z 7→∗ z by reflexivity.

3. z ↓ by (↓-Z).

Case Γ ` s(e) : nat (S): We need to show Rednat(γ(s(e))), i.e. Rednat(s(γ(e))) by definition of
substitution.

From the premise of the rule, we have Γ ` e : nat, and by assumption γ 
 Γ. By I.H., we
have Rednat(γ(e)). By definition of Rednat, we have · ` γ(e) : nat, γ(e) 7→∗ v for some v val and
v ↓.

1. · ` s(γ(e)) : nat by (S).

2. s(γ(e)) val by (S-V) and s(γ(e)) 7→∗ s(γ(e)) by reflexivity.

3. s(γ(e)) ↓ by (↓-S) (note that the premises of the rule are satisfied by what we have above).

Case Γ ` natrec(e; e0;x.y.e1) : τ (Rec): We need to show Redτ (γ(natrec(e; e0;x.y.e1))),
i.e. Redτ (natrec(γ(e); γ(e0);x.y.γ(e1))) by definition of substitution.

From the premises of the rule, we have Γ ` e : nat, Γ ` e0 : τ and Γ, x : nat, y : τ ` e1 : τ .
By assumption, we also have γ 
 Γ.

By the substitution lemma on Γ, x : nat, y : τ ` e1 : τ , we have x : nat, y : τ ` γ(e1) : τ . By
I.H. on the first two premises, we have Rednat(γ(e)) and Redτ (γ(e0)). From these, we also have
· ` γ(e) : nat and · ` γ(e0) : τ . Hence, · ` natrec(γ(e); γ(e0);x.y.γ(e1)) : τ by (Rec).

From Rednat(γ(e)), we also have γ(e) 7→∗ v for some v where v val and v ↓. By congruence
with (Rec-S), we have natrec(γ(e); γ(e0);x.y.γ(e1)) 7→∗ natrec(v; γ(e0);x.y.γ(e1)).

Using closure under head expansion, it suffices to show Redτ (natrec(v; γ(e0);x.y.γ(e1))). We
do this by nested induction on the v ↓ judgement. Note that we have · ` (natrec(v; γ(e0);x.y.γ(e1))) :
τ and · ` v : nat by type preservation.

Sub-case (↓-Z): We have v = z, so natrec(z; γ(e0);x.y.γ(e1)) 7→ γ(e0) by (Rec-IZ). Since
Redτ (γ(e0)), we have Redτ (natrec(z; γ(e0);x.y.γ(e1))) by closure under head expansion.

Sub-case (↓-S): We have v = s(e′) for some e′, v′ such that e′ 7→∗ v′, v′val and v′ ↓. By
inversion on the typing judgment for v, we have · ` e′ : nat. Therefore, Rednat(e

′) by defi-
nition. By the nested I.H. on v′ ↓, we have Redτ (natrec(v′; γ(e0);x.y.γ(e1))). We also have
· ` natrec(e′; γ(e0);x.y.γ(e1)) : τ by (Rec), and therefore, Redτ (natrec(e′; γ(e0);x.y.γ(e1)))
by closure under head expansion and congruence with (Rec-S).

Let γ′ be the mapping {x ↪→ e′, y ↪→ natrec(e′; γ(e0);x.y.γ(e1))}. We have that γ′◦γ 
 Γ, x :
nat, y : τ . Therefore, by the outer I.H., we have Redτ (γ′◦γ(e1)) i.e. Redτ (γ′(γ(e1))) since γ, γ′ are

2



disjoint finite maps and γ only contains closed terms. Finally, we have natrec(s(e′); γ(e0);x.y.γ(e1)) 7→
γ′(γ(e1)) by (Rec-IS), and Redτ (natrec(s(e′); γ(e0);x.y.γ(e1))) by closure under head expan-
sion.

Case Γ ` λx:τ ′.e : τ ′ → τ (Lam): By premise of the rule, we have Γ, x : τ ′ ` e : τ . We
need to show Redτ ′→τ (γ(λx:τ ′.e)), i.e. Redτ ′→τ (λx:τ ′.γ(e))) by definition of substitution.

1. By the substitution lemma, we have x : τ ′ ` γ(e) : τ . Therefore, · ` λx:τ ′.γ(e) : τ ′ → τ
by (Lam)2.

2. λx:τ ′.γ(e) val by (Lam-V), and λx:τ ′.γ(e) 7→∗ λx:τ ′.γ(e) by reflexivity.

3. Consider e′ such that Redτ ′(e′). Let γ′ be the mapping {x ↪→ e′}. Consider the com-
posed mapping γ′ ◦ γ. We have γ′ ◦ γ 
 Γ, x : τ ′, so by I.H., we have Redτ (γ′ ◦
γ(e)) i.e. Redτ (γ′(γ(e))) since γ, γ′ are disjoint finite maps and γ only contains closed
terms. We have (λx:τ ′.γ(e))e′ 7→ γ′(γ(e)) by (App-I). Since · ` e′ : τ ′, we also
have · ` ((λx:τ ′.γ(e))e′) : τ by (App). Therefore, by closure under head expansion,
Redτ ((λx:τ ′.γ(e))e′).

�

Task 3 For each definition below, briefly explain (in 1-2 lines) the intuition behind your answer.

1. Define mult, where mult m n 7→∗ m ∗ n.3

2. Define minus, where minus m n 7→∗ m− n if m > n. It should produce 0 otherwise.

3. Define leq, where leq m n 7→∗ s(z) if m ≤ n and leq m n 7→∗ z otherwise.

4. Define mod, where mod m n = m mod n.

Solution: I write out the “ML” code for these definitions.

1. We use a helper function to do addition and then implement multiplication by recursive
addition.

fun plus Z n = n

| plus (S m) n = S (plus m n);

fun mul Z n = Z

| mul (S m) n = plus n (mul m n);

plus = λm:nat, n:nat.natrec(m;n;x.y.s(y))

mult = λm:nat, n:nat.natrec(m; z;x.y.plus n y)

2. We use a helper function to define the (bounded) predecessor, which allows us to define
(bounded) minus by recursively taking the predecessor.

fun pred Z = Z

| pred (S m) = m;

fun minus m Z = m

| minus m (S n) = pred (minus m n);

2Many students got this directly from the substitution lemma since we already know Γ ` e : τ ′ → τ and
Γ 
 γ.

3We will write n to indicate the representation of a natural number n as an element of type nat.

3



pred = λm:nat.natrec(m; z;x.y.x)

minus = λm:nat, n:nat.natrec(n;m;x.y.pred y)

3. We define an if-(zero)-then-else combinator, and use it together with the definition of
minus.

fun ifz Z t f = t

| ifz (S m) t f = f;

fun leq m n = ifz (minus m n) (S Z) Z;

ifz = λm:nat, t:τ, f :τ.natrec(m; t;x.y.f)

leq = λm:nat, n:nat.ifz (minus m n) (s(z)) z

4. The definition for mod works using the following property: m mod n = (m − 1 + 1)
mod n = ((m−1) mod n+1) mod n. This works if n > 0 but modulus by 0 is undefined,
so we set m mod 0 = 0.

fun mod Z n = Z

| mod (S m) n =

let val y = mod m n in (* y is m mod n *)

ifz (leq n (S y)) (S y) Z (* this implements (y+1) mod n *)

end

mod = λm:nat, n:nat.natrec(m; z;x.y.ifz (leq n s(y)) (s(y)) z)

I got a variety of great alternative solutions for this question. For example:

(a) Repeatedly subtracting n from m until m < n.

(b) Add 1 modulo n for m times (similar to mine above).

(c) Using m− n ∗ (m/n) with the definition of / given in class.

(d) Finding the largest k such that k ∗ n ≤ m, then m− k ∗ n.

(e) One of the above, but using the fixed-point iteration introduced in class.

Task 4 Define natrec(e; e0;x.y.e1) in terms of rec.

Solution: Intuitively, we need to track both x, y provided by natrec, so we make rec return a
pair instead. The first projection is used to return the current value of the natural number that
is being recursed on, while the second projection tracks the usual result of the recursive call.

natrec(e; e0;x.y.e1) = π2(rec(e; (z, e0); z.s(π1(z)), [π1(z), π2(z)/x, y](e1)))

4


