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ABSTRACT
We report on the design, implementation, and evaluation of a sys-
tem called Cedar that enables mobile database access with good
performance over low-bandwidth networks. This is accomplished
without degrading consistency. Cedar exploits the disk storage and
processing power of a mobile client to compensate for weak con-
nectivity. Its central organizing principle is that even a stale client
replica can be used to reduce data transmission volume from a data-
base server. The reduction is achieved by using content address-
able storage to discover and elide commonality between client and
server results. This organizing principle allows Cedar to use an
optimistic approach to solving the difficult problem of database
replica control. For laptop-class clients, our experiments show that
Cedar improves the throughput of read-write workloads by 39% to
as much as 224% while reducing response time by 28% to as much
as 79%.
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1. INTRODUCTION
Relational databases lie at the core of many business processes

such as inventory control, order entry, customer relationship man-
agement, asset tracking, and resource scheduling. A key contrib-
utor to this success is a database’s ability to provide a consistent
view of shared data across many geographically dispersed users,
even in the face of highly concurrent updates at fine granularity.
Transactional semantics are part of this consistency model.

Preserving consistency with acceptable performance under con-
ditions of weak connectivity is a difficult challenge. Indeed, it has
been widely accepted since the early days of mobile computing that
shared data access involves a fundamental tradeoff between con-
sistency, good performance, and tolerance of poor network qual-
ity [14]. This has led to a variety of approaches (discussed in Sec-
tion 7) that relax consistency. However, failing to preserve consis-
tency undermines the very attribute that makes databases so attrac-
tive for many applications.

In this paper, we describe a new approach to mobile database
access that avoids the need to compromise consistency. In other
words, we show how to achieve good client performance under con-
ditions of weak connectivity without degrading consistency. Our
critical insight is that the disk storage and processing power of a
mobile client can be used to compensate for weak connectivity. We
report on the detailed design, implementation, and experimental
validation of this approach in a system called Cedar. We expect
that Cedar will benefit a broad category of applications for mo-
bile clients including those for mobile commerce [51, 64], traveling
sales people, mobile customer relationship management [54], and
disaster recovery [23].

Cedar uses a simple client-server design in which a central server
holds the master copy of the database. Cedar’s organizing princi-
ple is that even a stale client replica can be used to reduce data
transmission volume. It accomplishes this through the use of con-
tent addressable storage. The volume reduction is greatest when
the client replica and the master copy are identical. However, even
a grossly divergent replica will not hurt consistency; at worst, it
will hurt performance. This organizing principle allows Cedar to
use an optimistic approach to solving the difficult problem of data-
base replica control [10, 11]. At infrequent intervals when a client
has excellent connectivity to the server (which may occur hours or
days apart), its replica is refreshed from the master copy. Cedar pri-
marily targets laptop-class machines as mobile clients, but we also
explore Cedar’s applicability to PDA-class mobile clients. Since
laptop disk sizes can be 100GB or more today, replicating the entire
database is often feasible. For databases that are too large, Cedar
provides support for creating a useful partial replica.

A select query on a Cedar client is first executed on the lo-
cal replica to obtain a tentative result. Using cryptographic hash-
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ing, the client constructs a compact summary of the tentative result
and sends it to the server along with the query. The query is re-
executed at the server to obtain the authoritative result. The server
then constructs a compact summary of the difference between the
tentative and authoritative results and sends it back to the client.
If the client and server are in sync, there will be no difference be-
tween the results. The further out of sync they are, the larger the
difference in results. However, the difference is never larger than
the size of the result that would be generated without Cedar. By ap-
plying the difference to the tentative result, the client reconstructs
the authoritative result and returns it as the response to the select
query. Since applications never see tentative results, they perceive
the same database behavior that they would without Cedar. up-
date queries go directly to the server without special handling.

Cedar’s design and implementation pay careful attention to prac-
tical considerations. First, Cedar is completely transparent to client
applications and hence requires no changes to them. Second, data-
bases from different vendors can be used at the server and client.
This simplifies interoperability, and allows client and server soft-
ware to be independently optimized for their respective hardware
resources and workloads. Third, we do not require source code
access to any database.

2. BACKGROUND
In this section we examine the characteristics of networks that

Cedar targets and the reasons for their increasing popularity. We
also briefly discuss two key technologies on which Cedar is built,
content addressable storage and standardized database access APIs.

2.1 Wireless Wide-Area Networks
Millions of users today own personal computing devices that can

access, query, and update data stores and databases over wireless
networks. The increasing availability of wide-area connectivity op-
tions such as cellular GPRS/EDGE, EVDO, and WiMax has en-
couraged the notion of access to data anywhere and anytime [37].
However, many of these wireless technologies exhibit high vari-
ability in peak theoretical throughput, as shown in Table 1. End-to-
end latency is also highly variable. To make matters worse, recent
studies have shown that achievable throughput is often only 25–
65% of the theoretical maximum [18, 20], and that large drops in
throughput are seen during peak usage periods [43].

Wireless Technology Peak Theoretical Throughput

GPRS 30 – 89 Kbit/s
GPRS/EDGE 56 – 384 Kbit/s

CDMA (1xRTT) 144 Kbit/s (downlink)
64 Kbit/s (uplink)

EVDO (Rev. 0) 2,500 Kbit/s (downlink)
154 Kbit/s (uplink)

EVDO (Rev. A) 3,100 Kbit/s (downlink)
1,800 Kbit/s (uplink)

WiMax (802.16) 500 Kbit/s - 2,000 Kbit/s
(per connection)

Table 1: Wireless WAN Technologies Prevalent in 2006–07

Wireless Wide-Area Network (WWAN) technologies remain im-
portant for the foreseeable future in spite of the growing popular-
ity of WiFi (802.11) technology. First, WiFi coverage is limited
to compact areas where dense base station infrastructure can be
economically sustained. In contrast, WWAN technologies require
much less dense infrastructure that can often be piggybacked on

existing cell phone infrastructure. Hence, they are economically
sustainable over much larger geographic areas. Second, organiza-
tional and business considerations may preclude use of WiFi. For
example, a user may not subscribe to the wireless service provider
of a hotspot. As another example, corporate security guidelines
may prohibit a salesman from using the WiFi coverage available at
a customer site; hence unplanned use of WiFi might not be possible.
Third, existing WiFi infrastructure may be damaged or unusable in
situations such as disaster recovery and military operations. Rapid
setup of new wireless infrastructure is feasible only if it is sparse.
This typically implies reliance on WWAN technologies.

2.2 Content Addressable Storage
Cedar improves performance by discovering commonality across

tentative and authoritative database results. Since these results can
be large, eliding commonality can lead to a win on slow networks.
Based on its success in networking [55], distributed file systems [40,
58, 59] and enterprise-scale storage systems [26, 44] we use Con-
tent Addressable Storage (CAS) induced by cryptographic hashing
to discover commonality. As explained in Section 3.2, we have cus-
tomized this technique for improved performance in our context.

Like previous CAS-based efforts, we assume that real-world data
is collision-resistant with respect the cryptographic hash function
being used. In other words, it is computationally intractable to find
two inputs that hash to the same output [39]. Trusting in collision-
resistance, CAS-based systems treat the hash of a data item as its
unique identifier or tag. Data then becomes content-addressable,
with tags serving as codewords for the much larger data items in
network transmission.

Although concerns about the collision-resistance assumption of
CAS have been expressed [31], the rebuttal by Black et al. [12] is
compelling. If Cedar’s hash function (SHA-1 [49] today) is bro-
ken, replacing it would be simple since Cedar only uses hashing
on volatile data and never on permanent storage. While a much
stronger function such as SHA-256 [50] would increase computa-
tional effort at the client and server, the new hashes would still be
much smaller than the data items they represent.

2.3 Database Access APIs
Remote database access is widely supported today through Java

Database Connectivity (JDBC) and its antecedent, Open Database
Connectivity (ODBC). JDBC defines a Java API that enables vendor-
independent access to databases. In other words, an application
written to that API can be confident of working with any data-
base that supports JDBC. Each vendor provides a client compo-
nent called a JDBC driver that is typically implemented as a dy-
namically linked library layered on top of the TCP socket inter-
face. The wire protocol between the JDBC driver and its database is
vendor-specific, and typically embodies proprietary optimizations
for efficiency.

3. DESIGN AND IMPLEMENTATION
As Cedar’s focus is on improving performance without compro-

mising consistency, it assumes that at least weak or limited connec-
tivity is available. It is not targeted towards environments where
database access is required while disconnected. Cedar’s central
organizing principle, as stated earlier in Section 1, is that even a
stale client replica can be used to reduce data transmission vol-
ume. There is no expectation that a tentative result from a client
replica will be correct, only that it will be “close” to the author-
itative result at the server. Thus, the output of a client replica is
never accepted without first checking with the server. Cedar uses a
“check-on-use” or detection-based approach to replica control as in
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Part (a) of this figure shows how we transparently interpose Cedar into an existing client-server system that uses JDBC. The colored boxes
represent Cedar components. Part (b) maps this architecture to the protocol executed for a select query.

Figure 1: Proxy-Based Cedar Implementation

AFS-1 [48]. We rejected a “notify-on-change” or avoidance-based
approach even though it has been shown to have superior perfor-
mance in file systems such as AFS-2 [32] and its successors. There
were multiple reasons for this decision. First, it reduces wasteful
invalidation traffic to a weakly-connected client in situations where
most of the invalidations are due to irrelevant update activity. Sec-
ond, we were concerned about the performance issues that may
arise on a busy database server that has to actively track state on a
large number of clients. Finally, it simplifies the implementation at
both the client and the server

Cedar is implemented in Java, and runs on Linux as well as Win-
dows. It should also work on any other operating system that sup-
ports Java. In the next four sections, we examine specific aspects of
Cedar’s design. Section 3.1 discusses how Cedar is made transpar-
ent to both applications and databases. Section 3.2 describe how
Cedar detects commonality across results and constructs compact
result summaries. Section 3.3 describes Cedar’s support for creat-
ing partial replicas. Section 3.4 discusses how stale client replicas
can be refreshed.

3.1 Proxy-based Transparency
A key factor influencing our design was the need for Cedar to

be completely transparent to both applications and databases. This
lowers the barrier for adoption of Cedar, and broadens its applica-
bility. We use a proxy-based design to meet this goal. Our task is
simplified by the fact that Cedar is a pure performance enhance-
ment, and not a functionality or usability enhancement.

3.1.1 Application Transparency
Cedar does not require access to application source code. In-

stead, we leverage the fact that most applications that access data-
bases are written to a standardized API. This compact API (JDBC
in our implementation) is a convenient interposition point for new
code. Figure 1(a) shows how we interpose Cedar. On the applica-
tion end, the native database driver is replaced by Cedar’s drop-in
replacement driver that implements the same API. The driver for-
wards all API calls to a co-located proxy.

Figure 1(b) shows how these components interact when execut-
ing a select query. The proxy first executes the query on the
client replica and generates a compact CAS description of the re-
sult. It then forwards the original query and the CAS descrip-
tion to the database server. Note that while one could combine
Cedar’s database driver and proxy for performance reasons, sep-

arating them allows the proxy to be shared by different applica-
tions. While Cedar currently interposes on the JDBC interface, it
can also support ODBC-based C, C++, and C# applications by us-
ing an ODBC-to-JDBC bridge.

3.1.2 Database Transparency
As Figure 1(b) shows, the client’s query and CAS description is

received by a corresponding server proxy. The server proxy could
either be co-located with the server or placed on a separate ma-
chine. The only restriction is that it should be well connected to the
server. This proxy re-executes the query on the server and generates
a CAS description of the result. It then compares the client’s and
server’s descriptions of the results, eliminates commonality, and
only sends back the differences. Cedar does not apply updates to
the client replica as partial replicas, described later in Section 3.3,
might not contain all of the required data. Instead, these queries are
sent directly to the server without special client handling.

In this way, the database server is totally unaware of the client
replica — it is only the server proxy that is aware. Note that the
differences received from the server cannot be used to update the
client replica. A query might only select a subset of the columns
of each accessed table and the result would therefore only contain
a partial copy of the original rows. Using it to update the replica
and tracking the partially updated rows would be infeasible without
requiring extensive database modifications.

On both the client and the database server, we chose not to in-
corporate Cedar’s functionality directly into the database. Instead,
Cedar itself uses the JDBC API to access both the server and client
databases. This design choice to allow Cedar to be completely in-
dependent of the underlying database has a number of advantages.
First, the increased diversity in choice can be very useful when a
mobile client lacks sufficient resources to run a heavyweight data-
base server. In such situations, a lightweight or embedded database
could be used on the mobile client while a production database
such as MySQL or Oracle could be used on the server. We have
tested interoperability with MySQL and SQLite [56], an embedded
database with a small footprint. For queries that use non-standard
SQL extensions only supported by the server, Cedar transparently
ignores the failure of the replica to interpret such queries and for-
wards them verbatim to the database server. Second, it makes a
database’s physical layout completely transparent to Cedar. Thus,
a centralized database in a data center can be easily replicated for
scalability reasons without modifying Cedar.
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3.1.3 Adaptive Interpositioning
Although a Cedar client is optimized for weakly-connected oper-

ation, it may sometimes experience good connectivity. In that situ-
ation, its low-bandwidth optimizations may be counter-productive.
For example, as shown in Figure 1 (b), the latency added by exe-
cuting the query twice may exceed the savings from reduced data
transmission volume. There may also be situations in which a mo-
bile client is so resource-poor that our approach of using its disk
storage and processing power to compensate for weak connectivity
is infeasible.

Cedar therefore adapts its behavior to available bandwidth. When
the client proxy detects a fast network, it stops handling new queries.
The Cedar JDBC driver then transparently switches to direct use of
the server proxy. This eliminates the computational overhead of
using CAS and the cost of an extra hop through the client proxy.
Transactions that are currently in progress through the proxy are
completed without disruption. If, at a later point in time, the client
proxy detects unfavorable network conditions, it is once again trans-
parently interposed into the query handling path. The client proxy
uses the packet-pair based IGI/PTR tool [33] to measure band-
width. Our experiments indicate that relatively coarse bandwidth
estimation is adequate for triggering proxy state changes.

While we could have also bypassed the server proxy, this would
require dynamic substitution of the native JDBC driver for Cedar’s
JDBC driver. It would be difficult to implement this in a manner
that does not disrupt queries in progress. To preserve transparency,
we have chosen to forgo this optimization. Fortunately, the mea-
surements shown in Section 5 indicate that the server proxy over-
head is low.

We are also in the process of implementing adaptation with re-
spect to the staleness of the client replica. A very stale replica is
likely to produce tentative results that have little commonality with
authoritative results. In that situation, it is better to stop using the
client replica until it can be brought in sync with the server. Our
implementation approach is to have the client proxy track the sav-
ings from eliding commonality. When the savings are consistently
below a threshold, the interposition of the client proxy is removed.
Queries then go directly to the server proxy, as described above.

3.2 Commonality Detection

3.2.1 Exploiting Structure in Data
Rabin fingerprinting is an excellent tool for detecting common-

ality across opaque objects [16, 45]. An attractive property of this
tool is that it finds commonality even after in-place updates, inser-
tions, and deletions are performed on an object. Unfortunately, the
data boundaries found by Rabin fingerprinting rarely aligns with
natural boundaries in structured data. This makes it less attrac-
tive for database output, which is typically organized by rows and
columns. Simple reordering of rows, as might occur from a SORT
BY clause in a SQL statement, can degrade the ability of Rabin
fingerprinting to find commonality.

Cedar therefore uses an approach that has worked better than
Rabin fingerprinting for us in the past: we use the end of each
row in a database result as a natural chunk boundary [60]. It is
important to note that Cedar’s use of tabular structure in results
only involves shallow interpretation of Java’s result set data type.
There is no deeper semantic interpretation such as understanding
data type values, result schema, or integrity constraints.

3.2.2 Generating Compact CAS Descriptions
As Figure 2 shows, Cedar finds commonality by hashing at two

granularities: the entire result and each individual row. This makes

Row 1
Row 2
...
...
Row N

Hash1
Hash2

HashN

Entire Result 
Hash ...

...

Figure 2: Hashing in Cedar

Cedar’s approach to detecting commonality more amenable for se-
lections and joins. For operations such as aggregates, if Cedar de-
tects that the size of the CAS description is larger than the tentative
result, it chooses to forgo any CAS-based optimizations and for-
wards only the query to the database server.

However, for large results, the hash per row can still add up to
a sizable CAS description. We therefore use a simple but effective
approach to reducing the per-row contribution. Our approach rec-
ognizes that the entire result hash is sufficient to ensure correctness.
Since the sole purpose of a per-row hash is to support comparisons
at fine granularity, a subset of the bits in that hash is adequate to
serve as a strong hint of similarity. Hence, the CAS description
of a result only uses the lower n bits of each per-row hash. When
two per-row hashes match, the server proxy assumes that the cor-
responding row already exists in the tentative result. If this is an
erroneous assumption it will be detected in the final step of the
comparison process.

After the comparison of tentative and authoritative results is com-
plete, the server sends the client truncated hashes for the common
rows found, data for the rows known to be missing on the client,
and an untruncated hash of the authoritative result. The client re-
constructs its version of the authoritative result and verifies that
its entire hash matches that sent by the server. In the rare event
that there is a mismatch, the authoritative result is fetched verbatim
from the server.

A low value of n increases the probability of a collision, and
hence many verbatim fetches. On the other hand, a large value of
n renders a CAS description less compact. Given a hash of length
n bits, the probability p of a collision amongst m other hashes is

p = 1 − Pr {No Collision}
= 1 −

„
2n − 1

2n

«m

Cedar currently uses a value of n = 32 bits. As only result
hashes from the same query are compared, we expect m to be
small. However, even with m = 10, 000, the probability of seeing
a collision and having to refetch verbatim results from the server
would only be p = 2.3 × 10−6. It should be noted that we have
never encountered a collision during the development and evalua-
tion of Cedar.

3.3 Creating Partial Client Replicas
Some mobile clients may be too resource-poor to support a full

database replica. Even when resources are adequate, there may
be privacy, security, or regulatory concerns that restrict copying
an entire database to an easily-compromised mobile client. These
considerations lead to the need for creating partial client replicas.
Cedar’s challenge is to help create a partial replica that is cus-
tomized for a mobile user. Fortunately, there are many business
and social practices that are likely to result in temporal locality in
the query stream at a Cedar client. A partial replica that is tuned to
this locality will help Cedar achieve good performance.
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ID Name Address
1 John Doe 412 Avenue
2 Richard Roe 396 Road
3 Mary Major 821 Lane
4 John Stiles 701 Street
5 Jane Doe 212 Way

Original Table

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Horizonal Partitioning

ID Name Address Zip Email
1 John Doe 412 Avenue 15213 jd2@eg.com
2 Richard Roe 396 Road 15217 rr@eg.com
3 Mary Major 821 Lane 15232 mm@eg.com

ID Name Address Zip Email
4 John Stiles 701 Street 94105 js@eg.com
5 Jane Doe 212 Way 94112 jd@eg.com

Vertical Partitioning

ID Zip Email
1 15213 jd2@eg.com
2 15217 rr@eg.com
3 15232 mm@eg.com
4 94105 js@eg.com
5 94112 jd@eg.com

Figure 5: Horizontal and Vertical Partitioning

For example, consider a company that assigns a specific geo-
graphic territory or a specific set of customers to each of its sales-
men. The query stream generated by a salesman’s mobile client is
likely to be confined to his unique territory or unique set of cus-
tomers. Although the company’s customer database may be enor-
mous, only a small subset of it is likely to be relevant to that sales-
man. Similar reasoning applies to an insurance adjuster who is vis-
iting the homes of customers affected by a natural disaster. There
is typically a step in the workflow of claim handling that assigns
a specific adjuster to each claim. These assignments are typically
made at the granularity of many hours, possibly a whole day. For
the entire duration of that period, an adjuster is likely to only gen-
erate queries that pertain to his assignments.

Our solution is inspired by Coda’s use of hoarding to support
disconnected operation [35]. Cedar faces a simpler problem than
Coda because its hoarding does not have to be perfect. If a par-
tial replica cannot produce the correct response to a query, the only
consequence in Cedar is bad performance. No disruptive error han-
dling is needed relative to availability or consistency.

3.3.1 Hoard Granularity
Previous implementations of hoarding have typically operated

at the granularity of individual objects, such as files or mail mes-
sages. In contrast, Cedar hoards data at the granularity of tables and
table fragments. Cedar’s approach is based on the long-established
concepts of horizontal fragmentation [17] and vertical fragmenta-
tion [42], as shown in Figure 5. Horizontal partitioning preserves
the database schema. It is likely to be most useful in situations that
exploit temporal locality, such as the sales and insurance examples
mentioned earlier. Hoarding in Cedar is done through horizontal
fragmentation. If a query references a table that is not hoarded on
a mobile client, Cedar forwards that query directly to the database
server.

Total Unique Unique
Application Queries Queries %

AUCTION 115,760 41 0.04 %
BBOARD 131,062 59 0.05 %

datapository.net 9,395,117 278 0.003 %

Table 2: Unique Queries Within Workloads

3.3.2 Database Hoard Profiles
Hoarding at a Cedar client is controlled by a database hoard pro-

file that expresses hoard intentions within the framework of a data-
base schema. A database hoard profile is an XML file that contains
a list of weighted hoard attributes. Each hoard attribute specifies
a single database relation and a predicate. Cedar uses these predi-
cates to horizontally partition a relation. A database hoard profile
may be manually created by a user. However, it is much more
likely to be created by a database administrator or by using the tool
described in Section 3.3.3.

Figure 3 illustrates the syntax of hoard profiles. Each hoard at-
tribute is also associated with a weight that indicates its importance.
Cedar uses this weight to prioritize what should be hoarded on a
mobile client that has limited storage. As tentative results are al-
ways verified with the server, supporting external referential con-
straints, such as foreign keys, is not required for correctness. How-
ever, if needed, hoard profiles can be modified to support referen-
tial cache constraints [3] by extending hoard predicates to support
cross-table relationships.

3.3.3 Tools for Hoarding
To specify hoard attributes, a user needs to be aware of the SQL

queries that she is likely to generate while weakly connected. It is
often the case that a user does not directly specify SQL queries, but
indirectly generates them through an application. To help the user
in these situations, we have developed a tool called SQL Log Miner
(SLM). This tool analyzes query logs to aid in the creation of data-
base hoard profiles. It first abstracts queries into templates by re-
moving unique user input, as shown in Figure 4. It then analyzes
the abstracted log to determine unique queries and outputs them in
frequency sorted order. SLM is also able to use a database’s EX-
PLAIN feature to display queries that generate the largest results.

We used SLM to analyze database logs from a number of appli-
cations traces including an auction benchmark [6], a bulletin board
benchmark [6], and datapository.net, a web-enabled data-
base used for network trace analysis by the academic community.
As Table 2 shows, the number of unique queries was very small rel-
ative to the large number of queries. The data in Table 2 suggests
that it may be tractable to extend SLM to automate hoard profile
creation. Contextual information [46] and data mining [63] may be
additional sources of input for this automation task.

3.4 Refreshing Stale Client Replicas
Cedar offers two mechanisms for bringing a client replica in sync

with the database server. If a client has excellent connectivity, a
new replica can be created or a stale replica updated by simply
restoring a database dump created using the client’s hoard profile.
Although this is bandwidth-intensive, it tends to be faster and is our
preferred approach.

To handle extended periods of weak connectivity, Cedar also
provides a log-based refresh mechanism. The database server con-
tinuously maintains a timestamped update log. This can be ac-
complished without requiring any database changes as all produc-
tion database servers support logging today. Since logging is a
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USERS(nickname, fullname, password, zip)

(a) Schema of table named USERS

<attr table="USERS" predicate="zip >= 15222 AND zip <= 15295" weight="10"/>

(b) Hoard attribute

A hoard attribute is expressed in a notation that is almost identical to the predicate of a WHERE clause in a SELECT query. The hoard
attribute in (b) would cache all rows of the table specified in (a) whose zip codes lie between 15222 and 15295.

Figure 3: Syntax of Hoard Attributes

INSERT INTO users VALUES ("jd nick", "John Doe", "jd password", 15213)

(a) Original query from log

INSERT INTO users VALUES ("string", "string", "string", number)

(b) Abstracted query produced

Figure 4: Query Abstraction by SLM

Emulated
WAN

EVDO

Figure 6: Experimental Setup

lightweight operation, it typically has less than a 1% impact on
performance [41]. When a client detects available bandwidth, it
can obtain the log from the server and apply all the updates since
the last refresh. Bandwidth detection mechanisms can ensure that
the log fetch does not impact foreground workloads. The server
allocates a finite amount of storage for its log, and recycles this
storage as needed. It is the responsibility of clients to obtain log
entries before they are recycled. Once a log entry is recycled, any
client that needs it has to restore its entire replica using the method
described in the previous paragraph. Note that for partial replicas,
we do not support this refresh mechanism as update queries in the
log might require data that is not cached on the client.

4. EVALUATION APPROACH AND SETUP
How much of a performance win can Cedar provide? The an-

swer clearly depends on the workload, the network quality, and
on the commonality between the client replica and the server. For
resource-poor clients, it can also depend on the computational power
of the client. To obtain a quantitative understanding of this rela-
tionship, we have conducted experiments using both micro- and
macro-benchmarks. This section presents our experimental setup.
Our benchmarks and results follow in Sections 5 and 6.

Figure 6 shows the experimental setup used to evaluate Cedar.
The database server and the background load generator were 3.2
GHz Pentium 4s (with Hyper-Threading) with 4 and 2 GB of RAM
respectively. The laptop was a Thinkpad T41p with a 1.7 GHz
Pentium M processor and 1 GB of RAM. The PDA-class machine
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mum and minimum observed values. Four outliers (5X–30X of
the mean) were removed from the ping data.

Figure 8: EVDO Network Throughput and Latency

(henceforth referred to as just PDA) was a 1997-era Thinkpad 560X
with a 233 MHz Pentium MMX processor and 64 MB of RAM.

All the machines ran the Fedora Core 5 Linux distribution with
the 2.6.18-1 SMP kernel. We used Sun’s Java 1.5 as Cedar’s run-
time environment. The database server and the client replica used
the open source MySQL database. The server proxy was located
on the same machine as the database server.

We use the approach described in Section 3.2.1 to detect and
elide commonality between results. As CAS has been shown to be
better than compression [40], we do not consider the latter in our
evaluation.

As shown in Figure 6, we used both real and emulated networks
to evaluate Cedar’s performance. For the real Wireless WAN, we
used a Novatel Wireless (Merlin S720) PCMCIA card to connect
the laptop directly to the database server over a Sprint EVDO (Rev.
A) network link. While the theoretical throughput for this network
is 3,100 Kbit/s down and 1,800 Kbit/s up, Sprint advertises 600–
1400 Kbit/s down and 350–500 Kbit/s up. To verify this, we used
Iperf [34] and ping to measure the bandwidth and round trip latency
between the EVDO-enabled laptop and the database server. The
network was probed every 10 minutes over an ∼13 hour period.
The throughput was averaged over a 20 second transfer and the
round-trip latency over 25 pings. The measurements, presented in
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Figure 7: 0.5 MB Microbenchmark: 1 Mbit/s and 100ms Network

Figure 8, showed an average download and upload bandwidth of
535 and 94 Kbit/s and an average round-trip latency of 112 ms.

Based on these measurements and the theoretical throughput of
other wireless technologies shown in Table 1, we decided to evalu-
ate Cedar with emulated networks of 100 Kbit/s (representative of
CDMA 1xRTT), 500 Kbit/s and 1 Mbit/s (representative of EVDO),
and 2 Mbit/s (representative of WiMax). On each network, we ex-
perimented with round-trip times of 33, 66, and 100 ms. The em-
ulated WAN was implemented as a NetEm bridge [30]. As our
focus was on the performance of the mobile client, there were no
constraints on the network link between the database and the back-
ground load generator.

5. MICROBENCHMARKS
We used sensitivity analysis to explore how Cedar performs with

different hit rates on the client replica. We executed a number of
single-query microbenchmarks where we varied both the amount
of data selected by the query and the fraction of the result data
that was available on the mobile client. The queries in each mi-
crobenchmark fetched approximately 0.1, 0.5, and 1 MB of data
with the results being equally distributed over 100 rows. For each
of the microbenchmarks, the fraction of “fresh” data present on the
mobile client was varied between 0% and 100%. For example, in
the 60% case, the client replica was populated with 60% of data
that would match the authoritative result generated by the server.
The remaining 40% was explicity modified such that there would
be no match. As the client is unaware of the data that might be
stale, it still has to hash the entire tentative result to generate the
CAS description. The two extreme hit-ratios of 100% and 0% give
an indication of best-case performance and the system overhead.
To provide a baseline for comparison, we also ran the benchmarks
with MySQL’s native JDBC driver.

5.1 Results
In the interests of brevity, we only present a subset of the mi-

crobenchmark results and summarize the rest. For the microbench-
mark that fetched approximately 0.5 MB of data, Figure 7 presents
the query completion time and the amount of data downloaded by
the mobile client. The results show that Cedar’s performance is
almost a linear function of the amount of data found on the client
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Figure 9: 0.5 MB Microbenchmark Query Latency: Gigabit

replica. Cedar’s latency overhead is visible only when the amount
of stale data found is greater than 95%. Irrespective of whether the
laptop or PDA was used, the same trends were observed for all the
other microbenchmarks and network configurations.

In Figure 7 (b), note that even when Cedar finds no useful results
on the client replica (the 0% case), it still transfers slightly less
data than MySQL. This occurs because MySQL and Cedar use dif-
ferent encodings over the wire and Cedar’s encoding was slightly
more efficient for the microbenchmark’s dataset. This result also
shows that even though Cedar uses Java objects for its client-server
communication, its wire protocol is as efficient as MySQL’s native
JDBC driver.

Apart from the networks described in Section 4, we also ran the
microbenchmarks over a Gigabit Ethernet link. While Cedar is not
geared towards extremely fast networks, this allowed us to eval-
uate Cedar’s adaptability in a high bandwidth setting. As shown
in Figure 9, Cedar, without adaptation, is almost a factor of 10X
slower than MySQL. Our analysis showed that the most signifi-
cant cause for this slowdown was the extra software hops through
Cedar’s client and server proxy. A smaller, but nevertheless notice-
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able, fraction of the overhead was the computation cost of CAS.
This can be seen in the slight increase in latency as the amount of
fresh data on the replica decreases.

As described in Section 3.1.3, whenever the client detects a fast
network, it will bypass the local proxy and switch to directly con-
tacting the server-side proxy. This adaptation gets Cedar’s over-
head down to within 4.5X of the native performance. While still
relatively high, the absolute difference is within 0.1 seconds of na-
tive performance. Tuning our unoptimized prototype should further
improve Cedar’s performance.

6. THE MOBILESALES BENCHMARK
We are not aware of any widely used benchmark for evaluat-

ing mobile access to databases. We have therefore created Mo-
bileSales, a new benchmark based on the TPC-App [61] bench-
mark from the Transaction Processing Performance Council. While
TPC-App is targeted towards an application server environment,
we believe that a modified version of this benchmark is also appli-
cable to the mobile scenario.

The TPC-App benchmark consists of an online distributor that
allows clients to interact with a sales system. The workload con-
sists of a set of interactions: clients can add new customers, create
new orders, change payment types, check on the status of previ-
ous orders, view new products the distributor might have recently
added, look at detailed descriptions of products, and make changes
to the product catalog.

Individual interactions can exhibit dependencies on each other.
For example, the ’Create Order’ interaction takes as input a cus-
tomer’s unique identifier that could have previously been created by
a ’Create New Customer’ interaction. Some interactions can also
be composed of multiple queries. For example, the ’Create Order’
interaction takes as input a customer’s id, shipping information, the
items and quantities requested, and the payment information. The
interaction will validate the customer id and then check if the ship-
ping information already exists. If not, a new address is entered into
the database. It will then verify whether the customer qualifies for
discounts and if the order can be satisfied by the current inventory.
Only then is the order placed. However, interactions such as ’View
Product Detail’ only use a single query to fetch the product descrip-
tions for a number of items. More details on the database schema,
interaction types, test workload, query types, and dataset used in
MobileSales can be found in the benchmark specification [61].

Each client’s test run is defined by a time period that specifies the
length of benchmark execution and a mix that specifies the proba-
bility of each interaction type. The default mix is shown in Table 3.
There is no think time between interactions. The benchmark dataset
can be scaled with respect to the number of customers. The dataset
size is defined by (0.8×S +2006) MB where S is the scale factor.

While the focus of TPC-App is to test application server perfor-
mance, we believe that the model behind the benchmark’s interac-
tions is representative of a number of mobile use scenarios includ-
ing traveling salesmen, insurance adjusters, and customer relation
management (CRM) applications. MobileSales therefore retains
the same workload (dataset, queries, and interaction types) but, un-
like TPC-App, allows mobile clients to directly access the database
instead of being mediated through the application server. This is
not uncommon today and is recommended for enterprise applica-
tions on mobile clients [66].

The performance of an individual mobile client is measured in
terms of throughput (total number of interactions) and latency (av-
erage interaction completion time). MobileSales can also execute
clients on separate load generator machines. Apart from model-
ing concurrent database access, updates made by these load clients

Interaction Type Percentage

Create New Customer 1%
Change Payment Method 5%

Create Order 50%
Order Status 5%

View New Products 7%
View Product Detail 30%

Change Item 2%

Table 3: Default Mix of Client Interactions

ensure that the client replica diverges from the server as the bench-
mark progresses.

6.1 Benchmark Setup
For our experiments, we set the scale factor S to 50. This gen-

erates a dataset large enough for simultaneous access by 50 clients.
While the raw data size is 2 GB, it occupies 6.1 GB on disk due the
addition of indexes and other MySQL metadata.

Each test run executed for five minutes using the default mix
of client interactions shown in Table 3. This mix has a greater
percentage of update interactions than reads. The high write ratio
biases the results against Cedar as updates are not optimized. A
higher read ratio would only increase Cedar’s benefits.

During different benchmark runs, we set the number of load
clients to either 0, 10, 30, or 50. In the interests of space, we only
present the results for the unloaded server (0 load clients) and 50
clients. The results with 10 and 30 clients fall in between the 0 and
50 clients cases. The baseline for comparison is direct database
access via MySQL’s native JDBC driver. Relative to the baseline,
improvement is defined as

Improvement =
ResultCedar − ResultNative

ResultNative

We also evaluated the performance of mobile clients with two
different hoard profiles. The first profile, named Full Hoard, se-
lected the entire database for replication. The second profile, named
Partial Hoard, only selected half of the product catalog (a predom-
inantly read-only portion of the database) and did not include cus-
tomer or order information.

6.2 Laptop: Full Hoard Results
Figure 10 presents the results of the MobileSales benchmark

with the Full hoard profile. We first examine the unloaded server
case where the laptop is the only client accessing the database. The
results, presented in Figures 10 (a) and (b), show that the through-
put improvements due to Cedar range from 36% in the high band-
width case of 2 Mbit/s to as much as 374% in the low bandwidth
case of 100 Kbit/s. The average interaction latency shows similar
improvements, ranging from a 26% reduction at 2 Mbit/s to a 79%
reduction at 100 Kbit/s. The results from the emulated networks
match the real EVDO network where Cedar shows a 46% improve-
ment in throughput and a 30% reduction in the average interaction
latency. As latency on the 1 Mbit/s network increases, through-
put drops for both MySQL and Cedar. This occurs because neither
system can fill the bandwidth-delay product.

Figures 10 (c) and (d) show that even when the number of load
clients is increased to 50, Cedar retains its performance advantage.
MySQL’s performance shows very little change when compared to
an unloaded server. As the database is not the bottleneck, the im-
pact on both MySQL’s throughput and average interaction latency
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All results are the mean of three trials. The maximum standard deviation for throughput and latency was 6% and 7% respectively of the
corresponding mean.

Figure 10: Mobile Sales - Laptop with Full Hoard Profile

is less than 8%. Cedar, when compared to the unloaded server,
does show a more noticeable drop. As updates made by the load
clients increase the divergence between the client replica and the
server, Cedar has to fetch more data over the low bandwidth net-
work. Compared to the unloaded server, Cedar experiences a 3%
to 35% drop in throughput and a 3% to 55% increase in latency.
However, it still performs significantly better than MySQL in all
experimental configurations. The throughput improvements range
from 39% at 2 Mbit/s to 224% at 100 Kbit/s and latency reductions
range from 28% at 2 Mbit/s to 70% at 100 Kbit/s.

6.3 Laptop: Partial Hoard Results
Figure 11 presents the results of the MobileSales benchmark

with the Partial Hoard profile. As the hoard profile has no impact
on MySQL, its results are unchanged from Section 6.2. While the
performance gains due to Cedar drop when compared to the Full
hoard profile, they are still substantial. For an unloaded server, as
seen in Figures 11 (a) and (b), Cedar can deliver a throughput im-
provement ranging from 9% at EVDO to 91% at 100 Kbit/s and an
average interaction latency reduction ranging from 9% at EVDO to
48% at 100 Kbit/s. Even for the faster 1 and 2 Mbit/s networks,
Cedar’s throughput and latency improvements are in the range of
17–31% and 14–24%.

Figures 11 (c) and (d) show that as Cedar’s throughput drops
when compared to an unloaded server, the improvement relative to
MySQL now ranges from a throughput increase of 15% at 1 Mbit/s
with 33ms to 43% at 500 Kbit/s. The corresponding reduction in
average interaction latency ranges from 12% at 1 Mbit/s with 66ms
to 30% at 500 Kbit/s. The only exception is the EVDO network
where Cedar’s throughput is 14% lower than MySQL. We suspect

that this was a temporary network phenomena as these EVDO re-
sults exhibited the greatest variance in the experiments.

6.4 PDA: Full Hoard Results
Figure 12 presents the results from running MobileSales on the

PDA with the Full hoard profile. We see that, even with an ex-
tremely resource-limited client, Cedar can still deliver a significant
performance improvement. With the EVDO network and an un-
loaded server, we see a 23% improvement in throughput and 18%
reduction in latency. For the 100 Kbit/s network, we see a 205%
improvement in throughput and 70% reduction in latency for an
unloaded server and a 116% improvement in throughput and 54%
reduction in latency with 50 load clients.

The gains from using Cedar tail off at the higher bandwidths with
equivalent performance in most cases. However, Cedar actually
performed slightly worse than MySQL on a 1 Mbit/s with 33ms
network. Comparing it to MySQL’s throughput, we see a drop of
8% with an unloaded database server and a drop of 17% with 50
load clients. A similar drop is seen with 50 load clients on a 1
Mbit/s with 66ms network. This performance drop arose because
the 233 MHz CPU became a bottleneck when large amounts of
data needed to be hashed. This is exactly the scenario where the
adaptation technique proposed in Section 3.1.3 would be useful.
Tuning Cedar for PDAs should further decrease this overhead.

6.5 PDA: Partial Hoard Results
Switching the PDA from the Full hoard profile to the Partial

hoard profile showed the same behavior as with the laptop. We
therefore omit a detailed description of these results in the inter-
ests of space. Overall, Cedar delivered equivalent or better per-
formance that MySQL in almost all of the network configurations.

79



0

200

400

600

800

EVDO 100
Kbit/s

100 ms

500
Kbit/s

100 ms

1 Mbit/s
33ms

1 Mbit/s
66ms

1 Mbit/s
100ms

2 Mbit/s
100ms

To
ta

l N
o.

 In
te

ra
ct

io
ns

MySQL Cedar - Partial Hoard
Higher is better

0.0

2.0

4.0

6.0

EVDO 100
Kbit/s

100 ms

500
Kbit/s

100 ms

1 Mbit/s
33ms

1 Mbit/s
66ms

1 Mbit/s
100ms

2 Mbit/s
100ms

A
ve

ra
ge

 L
at

en
cy

 (s
ec

s) MySQL Cedar - Partial Hoard
Lower is better

(a) Throughput: Unloaded Server (b) Latency: Unloaded Server

0

200

400

600

800

EVDO 100
Kbit/s

100 ms

500
Kbit/s

100 ms

1 Mbit/s
33ms

1 Mbit/s
66ms

1 Mbit/s
100ms

2 Mbit/s
100ms

To
ta

l N
o.

 In
te

ra
ct

io
ns MySQL Cedar - Partial Hoard

Higher is better

0.0

2.0

4.0

6.0

EVDO 100
Kbit/s

100 ms

500
Kbit/s

100 ms

1 Mbit/s
33ms

1 Mbit/s
66ms

1 Mbit/s
100ms

2 Mbit/s
100ms

A
ve

ra
ge

 L
at

en
cy

 (s
ec

s) MySQL Cedar - Partial Hoard
Lower is better

(c) Throughput: Server Load = 50 (d) Latency: Server Load = 50

All results are the mean of three trials. The maximum standard deviation for both throughput and latency was 8% of the corresponding
mean.

Figure 11: Mobile Sales - Laptop with Partial Hoard Profile

The only exceptions were the two 1 Mbit/s network configurations
highlighted in Section 6.4. In these cases, relative to MySQL,
Cedar’s worst case overhead for throughput and latency was 11%
and 12% respectively.

6.6 Summary
Our results from the MobileSales benchmark demonstrate that

Cedar can significantly improve performance in low-bandwidth con-
ditions. We view these results as especially encouraging as they
were achieved without any compromise in consistency and without
any modifications to the application or database. Also, as described
in Section 6.1, these results arise from a write-intensive workload
that is biased against Cedar. We predict that Cedar would perform
even better for workloads with a greater percentage of reads. Fur-
ther, while Cedar is primarily targeted towards laptop-class clients,
our results indicate that even resource-limited PDA-class machines
can benefit.

7. RELATED WORK
Our work has been strongly influenced by previous work that

also aims at improving performance over WANs. In this section,
we describe these systems and highlight Cedar’s similarities and
differences. In particular, we discuss systems that relax consistency
for improved performance, mobile database systems, and other sys-
tems that use hash-based techniques.

7.1 Relaxing Consistency
While the benefits of caching data in mobile systems has long

been known [19], most systems weaken traditional consistency se-
mantics for performance reasons. Weakly-Consistent replication

in Bayou [57] was proposed for collaborative systems. Alonso
et al. [2] proposed quasi-copies for database systems to improve
performance by relaxing consistency when clients participate in
caching data. The Mariposa [52] distributed data manager showed
how consistent, although potentially stale, views can be seen across
a network of machines. Gray et al. [28] proposed a two-tier repli-
cation scheme that allows for tentative update transactions on the
mobile client that are later committed to the master copy.

Like Cedar, a number of systems have advocated middle-tier
database caching where parts of the database are replicated at the
edge for web-based applications [3, 4, 5, 36]. These systems, based
on an avoidance-based approach, require tight integration with the
database to ensure timely propagation of updates and are usually
targeted towards workloads that do not require strict consistency.

Gao et al. [27] propose using a distributed object replication
architecture where the data store’s consistency requirements are
adapted on a per-application basis. These solutions require substan-
tial developer resources and detailed understanding of the applica-
tion being modified. While systems that attempt to automate the
partitioning and replication of an application’s database exist [53],
they do not provide full transaction semantics.

An obvious disadvantage of these systems is that they provide a
different consistency or transactional model than what developers
and users have grown to expect. Tentative transactions increase the
probability of conflicts and require additional application complex-
ity or user interaction for conflict resolution. In contrast, Cedar’s
focus is on maintaining the transactional and consistency semantics
provided by the underlying database. While this design decision
prevents disconnected operation, we believe that this is an accept-
able tradeoff for an important class of real-world usage scenarios.
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All results are the mean of three trials. The maximum standard deviation for throughput and latency was 11% and 15% respectively of the
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Figure 12: Mobile Sales - PDA with Full Hoard Profile

7.2 Mobile Database Systems
Barbará and Imielinski [9] suggest informing clients of changes

made to a centralized database by broadcasting Invalidation Re-
ports (IRs) at periodic intervals. However, as IRs are a push-based
system, they are only effective if a large number of clients are inter-
ested in the same data. While hybrid push-pull systems have been
proposed [1], in the absence of locality, they still degenerate into a
pull-based behavior. IRs also add significant latency to queries as
each mobile client has to wait for the periodic IR broadcast before it
can verify data freshness. For a complete survey of previous work
on IRs and the mobile databases described above in Section 7.1, we
refer the reader to Barbará [8].

Some systems [8, 65] allow clients to obtain an exclusive copy of
the section of the database it is accessing. This can significantly de-
grade performance for other clients when mobile clients are weakly
connected. By recognizing that the local database replica could be
stale, Cedar instead ensures that there is no strong dependency be-
tween the main database server and the mobile client.

Cedar’s hoard profiles also bear some similarity to clustering at-
tributes [7] and client profiles [15]. However, while all three are
used to express preferences for database content, they have very
different functions. Clustering attributes define a database server’s
storage layout for improved access by mobile clients while client
profiles are used to indicate freshness and latency requirements for
systems that relax consistency.

7.3 Hash-based Systems
Successful use of CAS span a wide range of storage systems.

Examples of such systems include peer-to-peer backup of personal

computing files [22], storage-efficient archiving of data [13, 44],
remote file synchronization [62], DHT-based storage systems [24,
25], and file similarity detection [38].

Spring and Wetherall [55] apply similar principles at the network
level. Using synchronized caches at both ends of a network link,
duplicated data is replaced by smaller tokens for transmission and
then restored at the remote end. This and other hash-based sys-
tems such as the CASPER [59] and LBFS [40] file systems, and
Layer-2 bandwidth optimizers such as Riverbed and Peribit use Ra-
bin fingerprinting [45] to discover spans of commonality in data.
This approach is especially useful when data items are modified
in-place through insertions, deletions, and updates. However, as
shown previously [60], using structural information found in query
results can lead to a significant performance improvement than Ra-
bin fingerprinting-based approaches.

8. FUTURE WORK AND CONCLUSION
Cedar has shown the benefits of using client replicas. How-

ever, hoarding data on a mobile client can have privacy, security,
and regulatory concerns as the loss or theft of a mobile device can
expose confidential data. While vertical fragmentation, described
in Section 3.3.1, can be used to elide sensitive database fields, it
can also lead to a performance loss if queries frequently reference
those fields. Another possible alternative for data protection is to
encrypt sensitive data. Encryption could be implemented in a num-
ber of ways, including at the storage layer [47], within the client
replica [29], or even within the client proxy [21]. We are currently
evaluating these choices in order to minimize encryption’s impact
on resource-limited clients.
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We have not considered Cedar’s impact on power consumption.
While reducing network transmission has been shown to save power,
there is a tradeoff as Cedar uses computational cycles to achieve
the reduction. A careful investigation is needed to determine how
power should be factored into Cedar’s adaptation mechanisms.

In summary, this paper presents the design and implementation
of Cedar, a system that enables mobile database access with good
performance while preserving consistency. Cedar leverages a mo-
bile client’s storage and computational resources to compensate for
weak connectivity. Our results demonstrate that Cedar has low
overhead and can significantly improve performance for its intended
usage environment.
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