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Abstract

This paper is an answer to the question “What is unique and conceptuntly different about
mobile computing?” The paper begins by describing a set of constraints intrinsic to mobile
computing, and examining the impact of these constraints on the design of distributed systems.
Next, it summarizes the key results of the Coda and Odyssey systems. Finally, it describes the
research opportunities in five important topics relevant to mobile computing: caching metrics,
semantic callbacks and validators, resource revocation, analysis of adaptation, and global
estimation from local observations.

1. Introduction

What is really different about mobile computing? The

computers are smaller and bits travel by wireless rather

than Ethernet. How can this possibly make any difference?

Isn’t a mobile system merely a special case of a distributed

system? Are there any new and deep issues to be

investigated, or is mobile computing just the latest fad?

This paper is my attempt to answer these questions. The

paper is in three parts: a characterization of the essence of

mobile computing; a brief summary of results obtained by

my research group in the context of the Coda and Odyssey

systems; and a guided tour of fertile research topics

awaiting investigation. Think of this paper as a report from

the front by an implementor of mobile information systems
to more theoretically-inclined computers scientists.

1.1. Constraints of Mobility

Mobile computing is characterized by four constraints:

● Mobile elements are resource-poor relative to static

elements.

For a given cost and level of technology,
considerations of weight, power, size and
ergonomics will exact a penalty in computational
resources such as processor speed, memory size,
and disk capacity. While mobile elements will
improve in absolute ability, they will always be
resource-poor relative to static elements.
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. Mobility is inherently hazardous.

A Wall Street stockbroker is more
mugged on the streets of Manhattan

likely to be
and have his

lap;;p stolen than to have his workstation in a
locked office be physically subverted. In addition to
security concerns, portable computers are more
vulnerable to loss or damage.

● Mobile connectivi~ is highly variable in

performance and reliability.

Some buildings may offer reliable, high-bandwidth
wireless connectivity while others may only offer
low-bandwidth connectivity. Outdoors, a mobile
client may have to rely on a low-bandwidth wireless
network with gaps in coverage.

● Mobile elements rely on afinite energy source.

While battexy technology will undoubtedly improve
over time, the need to be sensitive to power
consumption will not diminish. Concern for power
consumption must span many levels of hardware
and software to be fully effective.

These constraints are not artifacts of current technology,

but are intrinsic to mobility. Together, they complicate the

design of mobile information systems and require us to

rethink traditional approaches to information access.

1.2. The Need for Adaptation

Mobility exacerbates the tension between autonomy and

interdependence that is characteristic of all distributed

systems. The relative resource poverty of mobile elements

as well as their lower trust and robustness argues for

reliance on static servers. But the need to cope with

unreliable and low-performance networks, as well as the

need to be sensitive to power consumption argues for self-

reliance.

Any viable approach to mobile computing must strike a

balance between these competing concerns. This balance

cannot be a static one; as the circumstances of a mobile

client change, it must react and dynamically reassign the
responsibilities of client and server. In other words, mobile

clients must be adaptive.
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1.3. Taxonomy of Adaptation Strategies

The range of strategies for adaptation is delimited by two

extremes, as shown in Figure 1. At one extreme,

adaptation is entirely the responsibility of individual

applications. While this laissez-faire approach avoids the
need for system support, it lacks a central arbitrator to

resolve incompatible resource demands of different

applications and to enforce limits on resource usage. It

also makes applications more difficult to write, and fails to

amortize the development cost of support for adaptation.

Application-aware

~

Laisaez-fsire Application-transparent

(no system support) (no changss to appkabons)

Figure 1: Range of Adaptation Strategies

The other extreme of application-transparent adaptation

places entire responsibility for adaptation on the system.

This approach is attractive because it is backward

compatible with existing applications: they continue to

work when mobile without any modifications. The system

provides the focal point for resource arbitration and

control. The drawback of this approach is that there may

situations where the adaptation performed by the system is

inadequate or even counterproductive.

Between these two extremes lies a spectrum of

possibilities that we collectively refer to as

application-aware adaptation. By supporting a

collaborative partnership between applications and the

system, this approach permits applications to determine

how best to adapt, but preserves the ability of the system to

monitor resources and enforce allocation decisions.

1.4. The Extended Client-Server Model

Another way to characterize the impact of mobile

computing constraints is to examine their effect on the

classic client-server model. In this model, a small number

of trusted server sites constitute the true home of data.

Efficient and safe access to this data is possible from a

much larger number of untrusted client sites. Techniques

such as caching and read-ahead can be used to provide

good performance, while end-to-end authentication and

encrypted transmission can be used to preserve security.

This model has proved to be especially valuable for

scalability [16]. In effect, the client-server model

decomposes a large distributed system into a small nucleus

that changes relatively slowly, and a much larger and less

static periphery of clients. From the perspectives of

security and system administration, the scale of the system
appears to be that of the nucleus. But from the perspectives
of performance and availability, a user at the periphery

receives almost standalone service.

Local Remote

Figure 2: Temporary Blurring of Roles

Coping with the constraints of mobility requires us to

rethink this model. The distinction between clients and

servers may have to be temporarily blurred, resulting in the

extended client-server model shown in Figure 2. The

resource limitations of clients may require certain

operations normally performed on clients to sometimes be

performed on resource-rich servers. Conversely, the need

to cope with uncertain connectivity requires clients to

sometimes emulate the functions of a server. These are, of

course, short-term deviations from the classic client-server

model for purposes of performance and availability. From

the Ionger-term perspective of system administration and

security, the roles of servers and clients remain unchanged.

2. Summary of Coda and Odyssey Results

We have been exploring application-transparent

adaptation since about 1990. Our research vehicle has been

the Coda File System, a descendant of AFS [2]. Coda has

been in active use for five years, and has proved to be a

valuable testbed [13]. Coda clients are in regular use over

a wide range of networks such as 10 Nlbls Ethernet, 2 Mbls

radio, and 9600 baud modems.

Since the research contributions of Coda have already

been extensively documented in the literature, we only

provide a high-level summary of the key results here:

Disconnected operation
Coda has demonstrated that disconnected operation is
feasible, effective, and usable in a distributed Unix
file system [3, 4, 17]. The key mechanims for
supporting disconnected operation include hoarding
(user-assisted cache management), update logging
with extensive optimization while disconnected, and
reintegration upon reconnection.

Optimistic replication
Coda was one of the earliest systems to demonstrate
that an optimistic replica control strategy can be used
for serious and practical mobile computing [6]. It
incorporates several novel mechanisms to render this
approach viable. These include log-based directory
resolution [5], application-specific file resolution [7],
and mechanisms for conflict detection, containment
and manual repair.

Support for weak connectivity
Coda has shown that weak
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exploited to alleviate the limitations of disconnected
operation [12]. The mechanisms needed to

accomplish this include adaptive transport protocols,
a rapid cache validation mechanism, a trickle
reintegration mechanism for propagating updates, and
model-based cache miss handling for usability.

Isolation-only transactions
In the context of Coda, a new abstraction called
isolation-only transaction has been developed to cope
with the detection and handling of read-write conflicts
during disconnected operation [9]. This abstraction
selectively incorporates concepts from database
transactions, while making minimal demands of
resource-poor mobile clients and preserving upward
compatibility with Unix applications.

Server replication
Coda has shown how server replication can be used to
complement disconnected operation [15]. Although
this is not particularly relevant to mobility, it is an
important result in distributed systems because it
clarifies the relationship between first-class (i.e.,
server) replicas and second-class replicas (i.e., client
caches). It also represents one of the first
demonstrations of optimistic replication applied to a
distributed system with the client-server model.

More recently, we have begun exploration of application-

aware adaptation in Odyssey, a platform for mobile

computing. An preliminary prototype of Odyssey has been

built [14, 18], and a more complete prototype is under

development. The early evidence is promising, but it is far

too early for definitive results.

3. Fertile Topics for Exploration

We now turn to the discussion of promising research

topics in mobile computing. By its very nature, this section

of the paper is highly speculative and will raise far more

questions than it answers. Further, this is a selective list: it

is certainly not intended to be complete. Rather, my goal is

to give the reader a tantalizing glimpse of the rich problem

space defined by mobile computing.

In choosing the five topics discussed below, I have

followed two guidelines. First, these problems are more

likely to be solved by rigor and analysis than by

implementation and experience. Second, each of these

problems is real, not contrived. Good solutions and

insights to these problems will strongly impact the mobile

computing systems of the future.

Each topic is presented in two parts: a brief discussion

that lays out the problem space of the topic, followed by a

sample of open questions pertaining to it. Again, my aim

in posing these questions is not to be exhaustive but to

offer food for thought.

3.1. Caching Metrics

Caching plays a key role in mobile computing because of

its ability to alleviate the performance and availability

limitations of weakly-connected and disconnected

operation. But evaluating alternative caching strategies for

mobile computing is problematic.

Today, the only metric of cache quality is the miss ratio.

The underlying assumption of this metric is that all cache

misses are equivalent (that is, all cache misses exact

roughly the same penalty from the user). This assumption

is valid when the cache and primary copies are strongly

connected, because the performance penalty resulting from

a cache miss is small and, to a first approximation,

independent of file length. But the assumption is unlikely

to be valid during disconnected or weakly-connected

operation.

The miss ratio also fails to take into account the timing of

misses. For example, a user may react differently to a

cache miss occurring within the first few minutes of

disconnection than to one occurring near the end of the

disconnection. As another example, the periodic spin-

down of disks to save power in mobile computers makes it

cheaper to service a certain number of page faults if they

are clustered together than if they are widely spaced.

To be useful, new caching metrics must satisfy two

important criteria. First, they should be consistent with

qualitative perceptions of performance and availability

experienced by users in mobile computing. Second, they

should be cheap and easy to monitor. The challenge is to

develop such metrics and demonstrate their applicability to

mobile computing. Initial work toward this end is being

done by Ebling [1].

3.1.1. Some Open Questions

● What is an appropriate set of caching metrics for
mobile computing?

. Under what circumstances does one use each
metric?

. How does one efficiently monitor these metrics?

. What are the implications of these alternative
metrics for caching algorithms?

3.2. Semantic Callbacks and Validators
Preserving cache coherence under conditions of weak

connectivity can be expensive. Large communication

latency increases the cost of validation of cached objects.

Intermittent failures increase the frequency of validation,

since it must be performed each time communication is

restored. A lazy approach that only validates on demand

could reduce validation frequency; but this approach would

worsen consistency because it increases the likelihood of
stale objects being accessed while disconnected. The cost

of cache coherence is exacerbated in systems like Coda that
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use anticipatory caching for availability, because the

number of objects cached (resident set size) is much larger

than the number of objects in current use (working set

size).

The Coda solution is to maintain cache coherence at

multiple levels of granularity and to use callbacks [11].

Clients and servers maintain version information on

individual objects as well as entire subtrees of them. Rapid

cache validation is possible by comparing version stamps

on the subtrees. Once established, validity can be

maintained through callbacks. This approach to cache

coherence trades precision of invalidation for speed of

validation. It preserves correctness while dramatically

reducing the cost of cache coherence under conditions of

weak connectivity. Usage measurements from Coda

confirm that these potential gains are indeed achievable in

practice [12].

The idea of maintaining coherence at multiple

granularities can be generalized to a variety of data types

and applications in the following way:

● a client caches data satisfying some predicate P

from a server.

. the server remembers a predicate Q that is much
cheaper to compute, and possesses the property Q
implies P. In other words, as long as Q is true, the
cached data it corresponds to is guaranteed to be
valid. But if Q is false, nothing can be inferred
about that data.

. On each update, the server re-evalttates Q. If Q
becomes false, the server notifies the client that its
cached data might be stale.

. Prior to its next access, the client must contact the
server and obtain fresh data satisfying P.

We refer to Q as a semantic callback for P, because the

interpretation of P and Q depends on the specifics of the

data and application. For example, P would be an SQL

select statement if one is caching data from a relational

database. Or it could be a piece of code that performs a

pattern match for a particular individual’s face from a

database of images. Q must conform to P a simpler

select statement in the first case, and a piece of code

that performs a much less accurate pattern match in the

second case. In Coda, P corresponds to the version number

of an object being equal to a specific value (x), while Q

corresponds to the version number of the encapsulating
volume being unchanged since the last time the version

number of the object was confirmed to be x.

Semantic validation can be extended to domains beyond

mobile computing. It will be especially valuable in

geographically widespread distributed systems, where the
timing difference between local and remote actions is too

large to ignore even when communication occurs at the

speed of light. The predicate Q in such cases serves as an

inexpensive validator for cached data satisfying some

complex criteria.

Consider the example of a transcontinental distributed

system in the United States. Even at the speed of light,
communication from one coast to the other takes about 16

milliseconds. A round trip RPC will take over 30

milliseconds. During this time, a client with a 100 MIP

processor can execute over 3 million instructions! Since

processor speed can be expected to increase over time, the

lost computational opportunity represented by this scenario

will only worsen.

Over time, the synchronous model implicit in the use of

RPC will become increasingly untenable. Eventually, very

wide-area distributed systems will have to be structured

around an asynchronous model. At what scale and

timeframe this shift will occur depends on two factors: the

substantial y simpler design, implementation, and

debugging inherent in the synchronous model, and the

considerably higher performance (and hence usability) of

the asynchronous model.

One promising asynchronous model is obtained by

combining the idea of cheap but conservative validation

with the style of programming characterized by optimistic

concurrency control [8]. The resulting approach bears

some resemblance to the use of hints in distributed

systems [19], and is best illustrated by an example.

Consider remote control of a robot explorer on the

surface of Mars. Since light takes many minutes to travel

from earth to Mars, and emergencies of various kinds may

arise on Mars, the robot must be capable of reacting on its

own. At the same time, the exploration is to be directed

live by a human controller on earth — a classic command

and control problem.

This example characterizes a distributed system in which

communication latency is large enough that a synchronous

design paradigm will not work. The knowledge of the

robot’s status will always be obsolete on earth. But, since

emergencies are rare, this knowledge will usually differ

from current reality in one of two benign ways. Either the

differences are in attributes irrelevant to the task at hand, or

the differences can be predicted with adequate accuracy by

methods such as dead reckoning. Suppose the robot’s state

is P, as characterized in a transmission to earth. Based on

some properties, Q, of this state, a command is issued to

the robot. For this command to be meaningful when it
reaches the robot, Q must still be true. This can be verified

by transmitting Q along with the command, and having the

robot validate Q upon receipt. For this approach to be

feasible, both transmitting and evaluating Q must be cheap.

There are, of course, numerous detailed questions to be
answered regarding this approach, But it does offer an

intriguing way of combining correctness with performance

in very wide-area distributed systems.



3.2.1. Some Open Questions

. Under what circumstances are semantic callbacks
most useful? When are they not useful?

. What forms can P and Q take for data types and
applications in common use? How does one
estimate their relative costs in those cases?

. Can P and Q really be arbitrary code? Are there
restrictions necessary for efficiency and
practicality?

● How does one derive Q from P quickly? Are there
restrictions on P that make this simpler?

. How does one trade off the relative cost and benefit
of P and Q? Is the tradeoff space discrete or
continuous? Can this tradeoff be made adaptive?

3.3. Algorithms for Resource Revocation

Application-aware adaptation complicates the problem of

resource management. In principle, the system owns all

resources. At any time, it may revoke resources that it has

temporarily delegated to an application. Alas, reality is

never that simple. A variety of factors complicate the

problem.

First, some applications are more important than others.

Any acceptable revocation strategy must be sensitive to

these differences. Second, the cost of revoking the same

resource may be different to different applications. For

example, reducing the bandwidth available to one

application may result in its substantially increasing the

amount of processing it does to compensate. A similar

reduction in bandwidth for another application may result

in a much smaller increase in processing. A good

revocation strategy must take into account these differential

impacts. Third, there may be dependencies between

processes that should be taken into account during

revocation. For example, two processes may have a

producer-consumer relationship. Revoking resources from

one process may cause the other to stall. More complex

dependencies involving multiple processes are also

possible. Unless revocation takes these dependencies into

account, hazards such as deadlocks may occur.

Revocation of resources from applications is not common

in current systems. Classical operating systems research

has focused on resource allocation issues rather than

resource revocation. As a result there is currently little

codified knowledge about safe and efficient techniques for

revocation. This deficiency will have to be remedied as

application-aware adaptation becomes more widely used.

3.3.1. Some open questions

● How does one formulate the resource revocation
problem?

● How does one characterize the differential impact of
revocation on different applications?

. What strategies does one use if multiple resources
must be simultaneously revoked?

. How does one distinguish between resources whose
revocation is easy to recover from and those it is
expensive or impossible to recover born?

. How does one handle deadlocks during revocation?

3.4. Analysis of Adaptation
How does one compare the adaptive capabilities of two

mobile clients? The primary figure of merit is agility, or

the ability of a client to promptly respond to perturbations.

Since it is possible for a client to be more agile with respect

to some variables (such as bandwidth) than others (such as

battery power), agility should be viewed as a composite

metric.

A system that is highly agile may suffer from instability.

Such a system consumes almost all its resources reacting to

minor perturbations, hence performing little useful

computation. The ideal mobile client is obviously one that

is highly agile but very stable with respect to all variables

of interest.

Control theory is a domain that might have useful

insights to offer in refining these ideas and quantifying

them. Historically, control theory has focused on hardware

systems. But there is no conceptual reason why it cannot

be extended to software systems. Only careful

investigation can tell, of course, whether the relevance is

direct and useful or merely superficial.

3.4.1. Some open questions

● What are the right metrics of agility?

. Are there systematic techniques to improve the
agility of a system?

. How does one decide when a mobile system is
“agile enough”?

● What are the right metrics of system stability?

. Can one develop design guidelines to ensure
stability?

. Can one analytically derive the agility and stability
properties of an adaptive system without building it
first?

3.5. Global Estimation from Local Observations
Adaptation requires a mobile client to sense changes in

its environment, make inferences about the cause of these

changes, and then react appropriately. These imply the

ability to make global estimates based on local

observations.

To detect changes, the client must rely on local

observations. For example, it can measure quantities such

as local signal strength, packet rate, average round-trip

times, and dispersion in round-trip times. But interpreting



these observations is nontrivial. A change in a given

quantity can be due to a multiplicity of non-local

phenomena. For example, packet rate will drop due to an

overload on a distant server. But it will also drop when

there is congestion on an intermediate network segment. If

an incorrect cause is inferred from an observation, the

adaptation performed by the client may be ineffective or

counterproductive.

At present there is no systematic theory to guide global

estimation from local observations. The problem is

especially challenging in the absence of out-of-band

communication, because the client cannot use an

alternative channel to help narrow the diagnosis on the

main communication channel.

3.5.1. Some Open Qnestions

. Are there systematic ways to do global estimation
from local estimates?

. Can one bound the error in global estimates?

● What is the relationship of global estimation to
agility of adaptation? Can one quantify this
relationship?

. Can one provide system support to improve global
estimation? For example, do closely-synchronized,
low-drift clocks on clients and servers help?

● Can one quantify the benefits of out-of-band
channels? For example, how much does the
presence of a low-latency, low-bandwidth channel
help with estimates on a parallel high-latency, high-
bandwidth channel?

4. Conclusion

The tension between autonomy and interdependence is

intrinsic to all distributed systems. Mobility exacerbates

this tension, making it necessary for mobile clients to

tolerate a far broader range of external conditions than has

been necessary hitherto.

Adaptation is the key to mobility. By using local

resources to reduce communication and to cope with

uncertainty, adaptation insulates users from the vagaries of

mobile environments. Our research is exploring two

different approaches to adaptation: application-transparent

and application-aware. Our experience with Coda confirms

that application-transparent adaptation is indeed viable and

effective for a broad range of important applications. In
circumstances where it is inadequate, our initial experience

with Odyssey suggests that application-aware adaptation is

the appropriate strategy.

In closing, it is worth speculating on the long-term

impact of mobility on distributed systems. In his book

Mind Children, my colleague Hans Moravec draws an

analogy between the seminal role of mobility in the

evolution of biological species, and its influence on the

capabilities of computing systems [10]. Although Hans’

comments are directed at robotic systems, I believe that his

observation applies equally well to a much broader class of

distributed computing systems involving mobile elements.

Mobility will influence the evolution of distributed systems

in ways that we can only dimly perceive at the present

time. In this sense, mobile computing is truly a seminal

influence on the design of distributed systems.
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