
HOT-Compilation: Typechecking Fω

∗TA: Akiva Leffert - aleffert@andrew.cmu.edu

Out: September 5, 2006
Due: September 19, 2006 (before midnight)

1 Introduction

The problem of typechecking a language is often reducible to the problem of deciding type equivalence for
that language. Sometimes type equivalence is a simple syntactic notion, but for many interesting languages,
type equivalence is non-trivial and requires a judgmental definition. In this assignment, you will implement
a typechecker for a prototypical language with a non-trivial notion of type equivalence, System Fω, the
polymorphic λ-calculus with type operators.

2 Overview

Your task is to create a file typecheck.sml defining a structure Typecheck matching the signature TYPECHECK
found in typecheck-sig.sml, reproduced here for your convenience.

signature TYPECHECK =
sig
exception Check of string
exception Error of string

structure Ctx : CONTEXT
where type con = Fomega.con
and type kind = Fomega.kind

type context = Ctx.context

val equiv_con : context -> Fomega.con -> Fomega.con -> Fomega.kind -> bool

val check_con : context -> Fomega.con -> Fomega.kind
val check_exp : context -> Fomega.exp -> Fomega.con

end

The functions check con and check exp should implement kind checking and type checking, respectively,
as described in Section 3. Typechecking will depend upon type equivalence, equiv con, which you may
implement using the weak head normalization technique from class, also described in Section 3. Signal any
type errors by raising Check with an appropriate error message; you may use the Error exception for internal
errors such as violated invariants or the occurrence of “impossible” conditions.

∗Originally prepared by William Lovas (Fall 2005)

1



κ ::= T kind of base types
| κ1 → κ2 kind of type operators

c ::= α constructor variables
| c1 → c2 function types
| ∀α:κ.c polymorphic types
| λα:κ.c type operators
| c1c2 type operator application

e ::= x variables
| λx:c.e abstraction
| e1e2 appliation
| Λα:κ.e polymorphic abstraction
| e[c] polymorphic application

Γ ::= · empty context
| Γ, α kinding declaration
| Γ, x:c typing declaration

Figure 1: Syntax of Fω

p ::= α constructor variables
| pc path application

n ::= p paths
| c1 → c2 function types
| ∀α:κ.c polymorphic types
| λα:κ.c type operators

Figure 2: Paths, p, and weak head normal forms, n, of Fω constructors

All of the above functions take a context. We provide the ContextFn functor in the file common/context-fn.sml
which you can instantiate to generate this type. Contexts contain both expression variable typing declara-
tions and constructor variable kinding declarations.

The file fomega.sml defines the Fomega structure, which describes the abstract syntax of Fω.
You may use the test harness interface in the Top structure (see top-sig.sml) to experiment with your

implementation. Several interesting examples are included in the examples.fom file. Section 4 gives the
grammar for the concrete ASCII syntax, along with some sample output.

Submit your code via AFS by copying typecheck.sml to the directory

/afs/andrew/course/15/501-819/submit/<your andrew id>/fomega/

Note: Your submission will be graded automatically; if you submit a typecheck.sml that fails to compile
under SML/NJ 110.59 using this assignment’s base distribution, we won’t be able to grade it.

3 Details

Figure 1 shows the abstract syntax of Fω, corresponding closely to the datatypes in fomega.sml. Type
equivalence for this language is non-trivial because the language includes a somewhat sophisticated “meta-
programming” layer at the constructor level, i.e. abstraction and application for constructors. In fact, the
constructor level is actually a complete copy of the simply-typed λ-calculus, “one level up”.

2



Γ ` c : κ

Γ(α) = κ

Γ ` α : κ

Γ ` c1 : T Γ ` c2 : T
Γ ` c1 → c2 : T

Γ, α:κ ` c : T α /∈ dom(Γ)
Γ ` ∀α:κ.c : T

Γ, α:κ ` c : κ′ α /∈ dom(Γ)
Γ ` λα:κ.c : κ → κ′

Γ ` c1 : κ → κ′ Γ ` c2 : κ

Γ ` c1c2 : κ′

Γ ` e ⇒ c

Γ(x) = c

Γ ` x ⇒ c

Γ ` c : T Γ, x:c ` e ⇒ c′ x /∈ dom(Γ)
Γ ` λx:c.e ⇒ c → c′

Γ ` e1 ⇒ c1 Γ ` c1 ⇓ c → c′ Γ ` e2 ⇒ c2 Γ ` c ⇔ c2 : T
Γ ` e1e2 ⇒ c′

Γ, α:κ ` e ⇒ c α /∈ dom(Γ)
Γ ` Λα:κ.e ⇒ ∀α:κ.c

Γ ` e ⇒ c1 Γ ` c1 ⇓ ∀α:κ.c′
1 Γ ` c : κ

Γ ` e[c] ⇒ [c/α]c′
1

Γ ` c ⇓ n

Γ ` c1 ⇓ λα:κ.c Γ ` [c2/α]c ⇓ n

Γ ` c1c2 ⇓ n

Γ ` c1 ⇓ p1

Γ ` c1c2 ⇓ p1c2 Γ ` n ⇓ n

Γ ` c1 ⇔ c2 : κ

Γ ` c1 ⇓ n1 Γ ` c2 ⇓ n2 Γ ` n1 ↔ n2 : T
Γ ` c1 ⇔ c2 : T

Γ, α:κ ` c1α ⇔ c2α : κ′ α /∈ dom(Γ)
Γ ` c1 ⇔ c2 : κ → κ′

Γ ` c1 ↔ c2 : κ

Γ(α) = κ

Γ ` α ↔ α : κ

Γ ` c1 ⇔ c2 : T Γ ` c′
1 ⇔ c′

2 : T
Γ ` c1 → c′

1 ↔ c2 → c′
2 : T

Γ, α:κ ` c1 ⇔ c2 : T α /∈ dom(Γ)
Γ ` ∀α:κ.c1 ↔ ∀α:κ.c2 : T

Γ ` p1 ↔ p2 : κ → κ′ Γ ` c1 ⇔ c2 : κ

Γ ` p1c1 ↔ p2c2 : k′

Figure 3: Algorithmic static semantics of Fω

3



Judgment Inputs Outputs Interpretation
Γ ` c : κ Γ, c κ Under context Γ, constructor c has kind κ
Γ ` e ⇒ c Γ, e c Under context Γ, expression e has type c
Γ ` c ⇓ n c n Under context Γ c has weak head normal form n

Γ ` c1 ⇔ c2 : κ Γ, c1, c2, κ Under Γ, c1 and c2 are algorithmically equivalent at kind κ
Γ ` n1 ↔ n2 : κ Γ, c1, c2 κ Under Γ, c1 and c2 are structurally equivalent at kind κ

Table 1: Summary of algorithmic static semantics for Fω

The necessity of some sort of non-trivial notion of type equivalence is easily seen through an example.
Suppose we had base types like int; we would want to be able to typecheck a term like “(λx:((λα:T.α)int).x)5”.
Naively applying the usual syntax-directed typing rules, we will be unable to show that this term is well-
typed, since the domain type of the function, (λα:T.α)int, does not syntactically match the argument’s type,
int. Intuitively, we know this term should typecheck, because in some sense, “(λα:T.α)int” and “int” are
equivalent types according to our usual interpretations of λ-calculus application. The declarative typing rules
from class, reproduced for your reference in Appendix A, make this intuition precise by way of a constructor
equivalence judgment, Γ ` c1 ≡ c2 : κ, and a type conversion rule utilizing that judgment.

To implement a typechecker for this language, we need syntax-directed algorithmic typing rules. Figure 3
shows the algorithmic typing rules given in class. There are five judgments in total, summarized in Table 1.
(Aside: the kinding relation in Fω is simple enough that the declarative definition doubles as the algorithmic
definition. This won’t necessarily be the case in every language.)

To help understand how these rules work together, consider the type synthesis rule for application as an
example:

Γ ` e1 ⇒ c1 Γ ` c1 ⇓ c → c′ Γ ` e2 ⇒ c2 Γ ` c ⇔ c2 : T
Γ ` e1e2 ⇒ c′

When computing a type for e1e2, we first synthesize a type c1 for e1. Then we must check that this type has
the form c → c′ for some c and c′. Next, we synthesize a type c2 for e2. Finally, we must ensure that c2 is
in fact equivalent to c, the domain type of e1. This sort of procedure motivates a judgment for finding the
“true” top-level form of a type constructor, weak head normalization, written Γ ` c ⇓ n, and a judgment for
algorithmically determining if two constructors are equivalent at a particular kind, written Γ ` c1 ⇔ c2 : κ.

To implement the algorithmic equivalence judgment Γ ` c1 ⇔ c2 : κ, we dispatch on the kind κ at which
c1 and c2 are to be compared. Note that κ is an “input” to this judgment. If κ is T, we check that c1 and c2

have structurally equivalent weak head normal forms. The structural equivalence judgment Γ ` c1 ↔ c2 : κ
checks that c1 and c2 have the same form and then recursively applies algorithmic equivalence to their
subcomponents. Note that κ is an “output” of structural equivalence.

To algorithmically compare two constructors at higher kind κ → κ′, we conduct an “experiment” by
making up a variable α of the domain kind κ and comparing the applications c1α and c2α at the smaller
kind κ′. In this way, we eventually drive algorithmic equivalence down to base kind T, at which point any
β-redices created will be normalized away by algorithmic equivalence. (This rule may seem a bit strange,
but it is one way of algorithmically handling η-equivalence, and it will generalize nicely when we cover the
calculus with singleton kinds.)

You are encouraged to use the rules in Figure 3 to implement your typechecker, but any implementation
that is sound and complete with respect to the declarative rules in Figure 5 will be accepted. Whatever
strategy you choose, be careful to avoid capture when implementing substitution over constructors!

4 Examples

4



κ ::= Type

| κ1 => κ2

c ::= X

| c1 -> c2

| All X::κ.c

| lambda X::κ.c

| c1 c2

e ::= x

| lambda x:c.e

| e1 e2

| Lambda X::κ.e

| e [c]

Figure 4: ASCII syntax for Fω

The ASCII syntax we’ll use is described in Figure 4. Concretely, we adhere to all the usual conventions:
arrows in types and kinds associate to the right, application in expressions and constructors associates to
the left, and the scope of a bound variable extends as far to the right as possible. Identifiers beginning with
a capital letter represent constructor variables, while identifiers beginning with a lowercase letter represent
expression variables.

The following interactions with the SML/NJ top-level will give you some simple examples of how your
checker should work. Note that your checker need not produce this output exactly, but it should produce
“equivalent” output with respect to the constructor equivalence rules in Figure 5. More sample inputs may
be found in the file examples.fom distributed with this project’s base.

5



- Top.typecheck_string "Lambda X::Type. lambda x:X. x";
|- Lambda X::Type. lambda x:X. x
: All X::Type. X -> X
val it = () : unit

- Top.typecheck_string "Lambda Int::Type. lambda y:Int. (lambda x : ((lambda X::
Type. X) Int) . x) y";
|- Lambda Int::Type. lambda y:Int. (lambda x:(lambda X::Type. X) Int. x) y
: All Int::Type. Int -> (lambda X::Type. X) Int
val it = () : unit

- Top.typecheck_string "Lambda T::Type => Type. lambda f : (All X::Type. X -> T
X). Lambda A::Type. lambda x:A. f [A] x";
|- Lambda T::Type => Type.

lambda f:(All X::Type. X -> T X). Lambda A::Type. lambda x:A. f [A] x
: All T::Type => Type. (All X::Type. X -> T X) -> All A::Type. A -> T A
val it = () : unit

(* alpha *)
- Top.equiv_strings "lambda X::Type. X" "lambda Y::Type. Y";
val it = true : bool

(* beta *)
- Top.equiv_strings
= "All X::Type. X -> X"
= "(lambda X::Type. X) (All X::Type. X -> X)";
val it = true : bool

(* eta *)
- Top.equiv_strings
= "lambda F :: Type => Type. F"
= "lambda G :: Type => Type. lambda X::Type. G X";
val it = true : bool

- Top.equiv_strings
= "lambda F::Type => Type. lambda G::Type => Type. lambda X::Type. F X"
= "lambda F::Type => Type. lambda G::Type => Type. lambda X::Type. G X";
val it = false : bool

- Top.equiv_strings
= "lambda C::Type. (lambda X::Type. lambda C::Type. X) C"
= "lambda C::Type. lambda C::Type. C";
val it = false : bool

6



A Declarative static semantics

For reference, this Appendix contains the declarative judgments defining the static semantics of Fω.

Γ ` c : κ

Γ(α) = κ

Γ ` α : κ

Γ ` c1 : T Γ ` c2 : T
Γ ` c1 → c2 : T

Γ, α:κ ` c : T α /∈ dom(Γ)
Γ ` ∀α:k.c : T

Γ, α:κ ` c : κ′ α /∈ dom(Γ)
Γ ` λα:k.c : k → k′

Γ ` c1 : κ → κ′ Γ ` c2 : κ

Γ ` c1c2 : κ′

Γ ` e : c

Γ(x) = c

Γ ` x : c

Γ ` c : T Γ, x:c ` e : c′ x /∈ dom(Γ)
Γ ` λx:c.e : c → c′

Γ ` e1 : c → c′ Γ ` e2 : c

Γ ` e1e2 : c′

Γ, α:κ ` e : c α /∈ dom(Γ)
Γ ` Λα:κ.e : ∀α:κ.c

Γ ` e : ∀α:κ.c Γ ` c : κ
Γ ` e[c] : [c/α]c′

Γ ` e : c Γ ` c ≡ c′ : T
Γ ` e : c′

Γ ` c1 ≡ c2 : κ

Γ ` c : κ
Γ ` c ≡ c : κ

Γ ` c2 ≡ c1 : κ

Γ ` c1 ≡ c2 : κ

Γ ` c1 ≡ c2 : κ Γ ` c2 ≡ c3 : κ

Γ ` c1 ≡ c3 : κ

Γ ` c1 ≡ c2 : T Γ ` c′
1 ≡ c′

2 : T
Γ ` c1 → c′

1 ≡ c2 → c′
2 : T

Γ, α:κ ` c1 ≡ c2 : T α /∈ dom(Γ)
Γ ` ∀α:κ.c1 ≡ ∀α:κ.c2 : T

Γ, α:κ ` c1 ≡ c2 : κ′ α /∈ dom(Γ)
Γ ` λα:κ.c1 ≡ λα:κ.c2 : k → k′

Γ ` c1 ≡ c2 : k → k′ Γ ` c′
1 ≡ c′

2 : κ

Γ ` c1c
′
1 ≡ c2c

′
2 : κ′

Γ, α:κ ` c′ : κ′ Γ ` c : κ α /∈ dom(Γ)
Γ ` (λα:κ.c′)c ≡ [c/α]c′ : κ′

Γ ` c : κ → κ′ Γ /∈ FV (c)
Γ ` λα:κ.cα ≡ c : κ → κ′

Figure 5: Declarative static semantics of Fω

7


