SPHERES!
Justin Truman

Project Overview

Spheres is a game that, surprisingly enough, involves a bunch of spheres on a gameboard. There are three types of spheres – Gatherers, Defenders, and Predators. Gatherers are under your most direct control, you can place waypoints throughout the gameboard and they will move towards those waypoints, based on their current motivations and the priority you place on the waypoint (size of waypoint). Each level has food scattered throughout it, and to beat a level your Gatherer’s must eat all of the food on the board.

However, Gatherers are completely defenseless – although they will run away from any Predators they see, Predators are far more nimble and will easily devour any defenseless Gatherers. This is where Defenders come in. You have less direct control of Defenders – they are unaffected by the waypoints that you place. Their main motivating factors will be to stay near any defenseless Gatherers, and to hunt out any Predators that get too close. Initially, all Defenders are larger than Predators, and will correspondingly eat any Predators they manage to catch. Gatherers, although defenseless, will slowly grow from eating food, and after 3 foods will manage to spawn off an additional Defender. Defenders also grow, increasing in size and intimidation with each Predator they devour.

Predators are the last of the three units, and are the only units entirely out of your control. They are usually littered throughout a level, and will attack any weaker units that come into its range. They are moderately intelligent, and will try to flee whenever they are overpowered, but do not have the sophisticated hunting skills of Defenders. They make up for this in raw speed, as they are faster than Defenders and Gatherers. Like Defenders, Predators grow in size when they eat Gatherers, and if a single Predator is allowed to eat enough units, it can grow larger than a Defender. This all but dooms the player, as giant Predators can prey on both Defenders and Gatherers alike.

The Interface for the game is fairly straightforward. You can play the game entirely using a mouse, simply click anywhere on the gameboard to create a waypoint. Successive clicks on a waypoint will increase its size. Right-clicking a waypoint will delete it. Any Gatherer who manages to reach a waypoint will also automatically delete it. Beyond these controls, there is a [rather ugly] pane of variables at the bottom of the screen that are adjustable. These values affect the priorities of all friendly AI units, and can therefore dramatically change the behaviors of units. The exact specifics of each variable will be discussed later, but they are at least somewhat intuitive. Beyond these controls, there are a couple additional keyboard commands. Left and Right bracket “[“ and “]” increase or decrease the game speed. Escape exits the game. Enter is used to begin the next level at the menu screen. The number keys are master controls which allow one to cheat and edit the game board. The numbers 1-5 allow you to drop any of the various objects into the game. (Gatherers, Defenders, Predators, Waypoints, and Food). The default setting for this game (and the intended setting for players) is 4, which is the above-mentioned placing of waypoints. But it is just as easy to place down any of the other units in the game by pressing the corresponding keystroke. I used this feature predominately for debugging, and you are more than welcome to use it to test out some of the more interesting AI behaviors that are possible.

Development Summary

CODE:
The only external libraries in this game are the GLUI toolkit (for the ugly variable bar at the bottom of the screen), and fmod for sound. All of the other code in the game are my own work.

I did, however, make liberal use of my previous code from the first two Labs. Code that was written partly or mostly in Lab’s 1 or 2 include:

· MAIN.H

· GAME.H

· TERRAIN.H
(A modification of Lab 2’s COURSE.H)

· WORLD.H

· CAMERA.H

· CAMERASTATE.H (A class I wrote for Lab 2)

· INPUT.H

(A class I wrote for Labs 1 and 2)

· VEC3D.H

(My own Vector class)

· QUATERN.H
(My own Quaternion class)

· QUADTREE.H
· TEXTUREMAP.H

· SKYBOX.H

However, it should be noted that while a couple of these files (like TERRAIN.H) were left largely unmodified, the majority of them were almost entirely rewritten for this assignment.

The completely original code for this assignment were in the files:

· CREATURE.H

· PLAYER.H

· TEXT.H (Library for 2D Text overlays)

Here is a brief summary of each class and its general function:

MAIN.H

This class is left as-is from assignment 2 – all it really does is call GAME.

GAME.H

Easily the most cluttered (perhaps the only cluttered) file in my code. It was very clean until a couple of days ago – when all of the final elements of the game had to come together. There was a lot more “polish” to turn a game-in-development into an enjoyable, presentable experience than I expected. So all the little bits of data and functions, like the sound files (even the texture files at last minute), the in-between level menus, and a fair number of random, last-minute variables are included here. If I were to have another week to work on this, my next step would definitely be to move most of the litter in this file into their own classes. Although, compared to some of the code I’ve seen and worked with before, it’s not too bad. GAME.H includes any files and functions which do not have their own class, but need to be universally accessible through a singleton (such as textures and sound). It also provides the highest-level interface with the game logic, predominately through WORLD.H and PLAYER.H.
PLAYER.H

This file was originally meant to be all data needed separately by the player, such that it would be relatively easy to add additional players into the game at a later date. However, PLAYER.H soon took on the job of creature-control in general, so a more accurate name at this point would be CREATUREHANDLER. In PLAYER.H a list is maintained of all objects in the game, and actions such as births and deaths are processed. The game uses a recyclable queue of units, so any units killed or destroyed in the game are placed in the queue to be the next units placed on the board, in order to conserve memory. PLAYER.H also keeps a fair number of profiling utilities that keep track of how many of each unit there are, and monitors for conditions such as Winning or Losing a level (by having the Food or Gatherer objects drop to 0). CREATURE.H interfaces extensively with PLAYER.H

TERRAIN.H

It was not a high enough of a priority in this lab for this code to be substantially altered from my old Lab2 code. I used the already-in-place data-driven level design to create all my levels in the game. Beyond that, there’s little in this file that is different from in Lab2.
WORLD.H

WORLD.H is also very similar to in earlier Labs. This is because World doesn’t really have much state or logic itself, and instead is a higher level interface to the more specific game data, such as CREATURE.H and TERRAIN.H. Nothing really new here.
CAMERA.H

Although this file was used from Lab2, it was rather extensively modified. I had kind of hacked-together my quaternions and camera control in that assignment, so I spent my first week or two on this assignment reconfiguring CAMERA.H so that it was more robust and reliable. It is now quite an effective class – you can manually rotate or translate a camera, load or combine quaternions, or explicitly specify a location and forward vector. This robust of a framework made the rest of the camera control in the project trivial, since it is [finally] equipped to handle any arbitrary camera needs.

CAMERASTATE.H

The state of a camera, consisting of a location vector, forward vector, and quaternion. I spent quite a while trying to reduce all data to either a location and forward vector, or just a location and quaternion, but found that there were plenty of camera situations that were far more intuitive with one method than the other. Thus, this class moderates any alterations to the quaternion and forward vector, and assures that they are always consistent, so that I never need to spend time worrying about what sort of camera calls I have to make.

TEXT.H

This is a fairly simple class that I created for 2D Bitmap text overlays. Basically it allows you to create a 2D text object and draw it without having to muck around in all the relevant glut calls.

INPUT.H

This file has changed little from assignment to assignment, since it is fairly straightforward. It simply processes any and all mouse and keyboard input and forwards those commands to the appropriate locations.

VEC3D.H

This is my own 3D Vector class, which I finally got all the bugs worked out [I think] during the final project.

QUATERN.H

This is the sister class to my VEC3D class, it is my own implementation of Quaternions. There are probably still a couple-few bugs inside this one, but for the most part it is robust and reliable, allowing just about any quaternion operation I could think of.
QUADTREE.H

Simple little class for my quadtree. I didn’t touch this one for this assignment.

SKYBOX.H

Same deal here – didn’t even touch it beyond what was provided for Lab 1 and 2.

TEXTUREMAP.H

Yet another bit of code you provided, and I haven’t found lacking.

CREATURE.H

This is the heart and soul of my game. In here is all of the AI for all the in-game units (in 3 functions – Think(), Act(), and Motivate()), as well as any of the specific unit processing like births, deaths, eating, growth, etc. This class interfaces heavily with PLAYER.H, which is the only way a CREATURE instance can gain information about another instance of CREATURE. I also think this code is particularly clean and readable – something I worked hard at, knowing that debugging AI would be hard enough as it is.

FMOD.H and GLUI.H

These are the imported libraries that I used for sound and user-interface, respectively. In hindsight, I’d recommend against using GLUI – it’s quick and dirty, but it’s butt-ugly and there’s little you can do about it.

CONTENT:

I took a very minimalistic approach to content in this game. I’m not an artist, and find little satisfaction or competence in making things aesthetically pleasing. So I have no models, merely gluSpheres, and only a few simple textures and sounds. The textures are in a TEXTURE/ directory, the sounds are in SOUND/, and the directory LIB/ contains a couple of libraries for fmod and glui.

The textures were all just randomly picked off the internet – they are all textures that look reasonably good when mapped on a sphere. There was far more inspiration involved in the sound files – all the sound for this game is the product of old NES and Sega games. If you have a good memory, you can recognize Mario, Duck Hunt, and my personal favorite, Altered Beast.

ARTIFICIAL INTELLIGENCE SPECIFICATION:

I thought it would be necessary and useful to also give a fairly quick rundown of how the AI works, and what sorts of things it is capable of (especially because there is usually so much going on on the screen that some of these actions aren’t clearly visible).

The sum total of the AI is essentially an extended flocking algorithm. Rather than having memory and state for each unit, during the evaluation phase, each unit observes every other unit on the board, with units outside of the range of visibility discarded. Basically, every type of unit has a series of variables that influence its interaction with any nearby objects. For example, a Gatherer’s Hunger determines how drawn it is to nearby food, their Safety repels them away from any visible predators, and their Herding causes them to be drawn to any nearby Gatherers.

Beyond that basic motivations, there are also special cases for particularly close units. Homophobia repels similar units, keeping them a comfortable distance apart. Collisions are also dealt with separately, with additional forces deterring units from walking through each other.
One addition I found really helped the interactions of units was having variable visibility distance for different objects. For example, a Predator can “smell” a Gatherer from rather far away, but gets quite close before it will realize that it has ventured near a Defender. I found this, along with the various motivating variables, really helped bias the different motivations in a realistic manner.
The two state variables that do effect unit interactions are size and fear. Every Gatherer has a “fear” rating, which is based upon its proximity to nearby Predators. This was an easy way for Defenders to flock towards the most endangered Gatherer, since fear was highest there. Size also pays a deceptively large part (no pun intended) in the interactions. As Defenders get larger, they exert a stronger repulsive force on any Predators. Thus, the Predators actually fear and avoid the larger Defenders. Similarly, a Gatherer that has eaten a food or two will be that much more attractive to Predators, and Defenders are more aggressive when going against Predators that are substantially smaller.

Although this is mentioned elsewhere, the complete obvliviousness of all units to the ledges and cliffs on the levels is deliberate. This encourages the participation of the player, and adds additional tension to the action.

Furthermore, different units had differing levels of the AI implemented. For example, Defenders have the most advanced interception algorithm, which allows them to predict where a unit will be intersect with, rather than merely moving towards where a unit currently is. This benefit helped compensate for the extra speed that Predators have.

However, by far the most unstable of unit interactions is the Defense variable. This value causes the Gatherers and Defenders to cluster together. However, I was unable by this time to find a different formula or adjustment of the Defense value that would not either collapse all the units into themselves, or leave a residual velocity on the group. For example, with a pair of Gatherers and a Defender to their right, the most common reaction is for the Gatherers to move closer to the Defender, but this causes the Defender to _slightly_ retreat from Homophobia. Repeat this process several dozen times a second, and it becomes clear why some clusters of Defense-priority units will just arbitrarily traverse the level.
Key Technical Challenges

By far, the most challenging aspect to implement in this game was AI. AI programming for games is a very different sort of problem set than other forms of AI that I have done. It is not really the desire to have a correct algorithm in place – often too much knowledge and precision makes the AI unenjoyable. Instead, game AI needs to be as [seemingly] intelligent or as organically random as is necessary to make a game interesting and fun to play. For this assignment, there were three particular technical hurdles that I needed to overcome for the AI.

The first, was to make the game fun. Since the player’s entire experience is mediated through AI units, the AI will wholly determine whether or not the game is any fun. My obvious first efforts to this end were to make an AI as intelligent and organic as possible. It needed to be able to take advantage of as much of the information in its environment as possible, for it to behave in any way interestingly.

However, it quickly became clear that my main difficulty was not from the AI being too stupid – more often, it came from the AI being too smart. Several times during the project my AI units were ambitious enough that they could almost complete each level without the influence of the player. As soon as the player feels that their actions are hardly relevant, the game loses any enjoyment it might have. I believe the most useful design decision with regards to involving the player was in creating levels with all sorts of holes that the AI could fall through. I deliberately removed any AI that prevented the units from avoiding the edges, since it would be far too easy to have the units perpetually avoid all cliffs, in which case they might as well have not been there. However, because of this solitary, glaring weakness on the part of the player’s units, the player must constantly and actively place waypoints to ensure that none of his units run off cliffs like lemmings.

The next difficult hurdle in the AI was creating organic-seeming units. If an AI were responding to a human, the human’s reactions would be varied and inconsistent enough that exhibiting varied, nondeterministic behavior would be much easier. However, since AI units only interact with other AI units, for the majority of the development process the AI units would behave the exact same way every time they were placed on the board. Further, since all three units have fundamentally similar algorithms for their behavior, units would respond to each other far too consistently. I didn’t want to include random noise into the AI, I thought that that would be too much of a copout. Instead, I chose to continue modifying the algorithm and the differences between the units until they behaved differently enough with each play for the game to be fun. I think the most important facet that improved the dynamic variety of the units was having varying intelligence for the different units. Defenders are by far the most intelligent – for example, they take into account the velocity of any units they are trying to intercept, and move towards where they expect the unit to be, rather than where the unit is now. This intelligence is certainly welcome, since they are almost entirely out of the player’s control. Gatherer’s are moderately intelligence, but their biggest weak point is how slow they are, so although they don’t act too stupid, they are eminently vulnerable. Finally, the predators are quite stupid, but make up for that with increased speed. Thus, an interesting group dynamic could be made with the same fundamental AI, simply by enabling and disabling certain features depending on the unit.

Finally, the most difficult hurdle was obviously the core AI algorithm itself. I fooled around with finite state machines in the beginning of the project, but found that they tended to result in very transparent and simplistic AI. It only takes a minute or two for a player to see past the behavior to the “states” that an FSM is transitioning through, and at that point the units cease to be compelling and lively artificial intelligences. Of the various more dynamic and continuous AI algorithms out there, I chose what is basically a greatly enhanced flocking algorithm to control the states of all my units. The amazing thing about this AI, once I got it working, is that no state is stored in the units. The only state-variable that is stored is the “fear” of each Gatherer – which Defenders use to gauge which Gatherers to protect first. None of the units have any memory of previous AI cycles, and recalculate their motivations constantly. The amazing thing about this system is that it still manages to behave very seemingly intelligently. Predators will lure out Defenders, use their speed to flank past the Defender on both sides, and then attack the unprotected Gatherers behind. Place a Predator in the middle of a group of Gatherers, or a Defender in the midst of a group of Predators, and the scattering pattern created by the fleeing units is extraordinarily lifelike.
Postmortem

THINGS THAT WENT RIGHT:

Flocking Algorithm AI: Overall, I ended up being very satisfied with the final AI exhibited by the units. There isn’t any memory stored in the units, but it proved to be unnecessary for this particular game, and the units behave quite lifelike. I truly doubt I could have achieved the same AI behaviors from a Finite State Machine, which would likely have been much more transparently robotic and deterministic. And although there are some other very good AI algorithms out there, I don’t think I could have implemented anything more complicated, like a Neural Net, to any degree of satisfaction within the time limit.

Early Planning and Detail spent on Class Structure: My coding was slower than usual at the beginning of the project, since I very meticulously planned out each class and made sure it was robust and safe (well beyond the specification for my project). This preplanning proved invaluable in the final weeks of the project, as I received far fewer logical and data-error bugs than I have had in any previous project – even with this being one of the largest projects I’ve ever handled on my own. Since I could implicitly trust the correctness and robustness of all my classes, I had hardly any seg faults or similar problems, and my data members, upon implementation, would almost always behave exactly as I had intended. I’m sure this time was more than made up in the last week, and allowed me to implement several additional features that I wouldn’t have had time to do.

Simplicity of Aesthetics: This is just my personal preference, but I really preferred spending the bulk of my time on the game logic and AI, rather than on the user interface and aesthetics. Because my original design doc had little to no emphasis on models, artwork, or fancy-shmancy UI’s, I could leave all that out and devote my time to problems which I found far more interesting and challenging. Although I’m sure a lot of other projects ended up looking a lot better than mine cause of their 3DS loaders and other graphical icing.

THINGS THAT WENT WRONG:

GLUI: I just have to say this right now – I really don’t like GLUI. At all. Even for my minimalistic standards, I find the toolbar at the bottom of the screen to be just plain ugly. Since I allotted almost no time to user interface, I was forced to stick with GLUI once I got it working, even though it just plain sucks. In retrospect I probably could have spent just as much time and had something substantially better looking, like FLTK or PUI, up and running.

Pathfinding: Creating believable AI took much longer than I envisioned it would, so I had no time left over to implement some of the [rather ridiculously] ambitious pathfinding designs I had intended. Instead, I chose to have data-loaded level design without obstacles, so the units need only interact with each other. In retrospect, this was also a sort of blessing, as adding the cliffs (along with the deliberate lack of avoidance on the part of the AI) gave additional much-needed importance to the player’s actions.

Last-minute hacks: In the last couple of days of the project, I had to throw together all the additional polish and appearance on top of the already solid framework, but there was a lot more than I expected. The result of this was that I ended up rather haphazardly hacking together the smaller bits of code, which although they seem bug-free as of the project demo, are far from robust, and just plain messy. If I had more time I would have probably made an additional 3-4 classes just for the various systems like the in between-level menus, separate global sound and texture classes (instead of just stuffing them in main), and gotten rid of a handful of random Booleans that I probably don’t really need.
IN RETROSPECT:

I certainly didn’t accomplish everything I had hoped to in this assignment. I didn’t get pathfinding in, or random terrain generation, and I had hoped for a more Real-Time Strategy feel to the game, with a home base that produced additional AI units which would go out on large maps, explore and forage, and then return to the safety of the base. Instead, the AI was better-illustrated in a more simplistic puzzle-like system of small gameboards and the units merely picking up food.

I also would have liked to have changed around the user interface. I would have most liked a little panel specifically designed for this game, with all the variable controls available and not quite so ugly. I also found that the interfacing with the AI variables was not as interactive as I’d hoped. Several of the variables, although they do bear a strong role in the behavior of the units, do not have results which are as immediately visible. Similarly, the relationship between other motivating priorities are a somewhat delicate balance, and any substantial editing of the values creates too abnormal of behavior. If I could spend some time refining the AI variables – not for the sake of the Artificial Intelligence itself, but for the purpose of creating some simplified, but immediately gratifying AI interface for the player, I think that would have made a more enjoyable game.
