The Quarks: A Game Programming Project
Wrap-Up

Ian Graham & Nick Carter
13th December 2002

Overview

The Quarks is a networked, multiplayer, team-based capture-the-flag game.
Each team controls a band of characters called Quarks—one player per char-
acter. The object is as that of standard capture-the-flag: each team has a base
and a team flag, and the objective of the game is to capture the opponents’
flag and return it to your base. Each Quark is able to walk and jump small
distances, as well as perform special abilities which allow them to modify the
level terrain as well as directly interfere with other characters:

Rocket: Rockets fire across space and explode on contact, obliterating terrain
and damaging Quarks caught within their blast radius.

StickyBrick: Bricks may be chucked at nearby walls—these StickyBricks attach
to the first piece of terrain they hit, expanding to create a region of brick
with some radius.

Variable blast radius: Both types of projectiles may have different radii of
effect upon impact. The radius of a projectile is increased by charging up
the firing Quark over time before releasing the projectile.

Quarks come in several flavours, including Up and Down.Effort was taken to
assure that controls were easy to use and relatively simple. More than 95% of
gameplay is accomplished via a three-button mouse. Mouse motion controls a
cursor that scrolls the level in world space. Mouse clicks direct a character to
perform an action — the left button to fire a rocket, the middle button to fire a
stickybrick, and the right button to walk and jump (which are performed as a
unified action made possible by path planning). Clicking and holding the left
or middle buttons results in charging up a projectile so as to increase the size
of its blast.



Development Summary

Structure of code:

Code was written with design effort placed in a few categories, including (a) thor-
oughly data-driven design, (b) mindfulness of correctness in the client/server
model (c) reusability, via class abstraction, of code not inextricably tied to game
logic. Furthermore, an interactive framerate of at least 60Hz was regarded as
necessary. Lastly —and most importantly — the game was to be fun; as designers
we were careful not to let techincal features overshadow the enjoyable aspects
of gameplay. The code structure can be outlined as follows:

1.

Map Renderer. A class module designed to encapsulate the dynamic ter-
rain model of our game. Its implementation was based on a quadtree.
Functions to efficiently test for intersection with this terrain, as well as
render and modify it, were provided as methods to the class.

Resource Managers. Three resource management modules were deemed
necessary for consolidated management of memory-intensive data. These
were a texture manager, a model manager, and a sound manager. The
purpose of these classes was to allow separate code sections to share the
same data instance without explicity knowledge of each other. Each was
implemented as a singleton thatprovided namespace abstraction (which, in
the case of textures and sounds, was a mapping from a logical namespace
to physical path locationss where data might be found.

Pathfinding Module. A pathfinding module was created to supply a unified
means for character movement and navigation. The primary search was
A* with several modifications made for efficiency.

Network Code. TCP/IP socket connections were virtualized by writing
an application-level protocol layer that, at its most fundamental layer,
was able to marshal and unmarshal C-language structs lacking pointer
indirection. Care was taken to remain independant of machine byte order,
and the code has tested successfully for communicationg between big- and
little-endian machines.

Centralized Game State. To the greatest extent possible, efforts were
made to avoid reduplication of code across client and server modules.
Where possible, game state was represented by a common class that both
could use in the same manner. This approach was also used along with
carefully-crafted network code in order to prevent synchronization issues
both between client and server and between multiple clients.

User Interface. Existing within the client module was code to provide a
usable and enjoyable user interface that fully exposed the abilities of the



game engine. Examples include mouse and keyboard input, a carefully-
select color-coded indicator system for both onscreen and offscreen char-
acters, a pretty startup screen, and score display for individual characters
and teams overall.

Eye Candy. Care was taken to provide visual effects such as lit, multi-
textured terrain, explosions (through the infamous Exploder class. Ex-
ploder!), motion-blurred and real-time deformable flag animation, and
smoothly interpolated character animation sequences.

In addition to the bitchin’ work just described, our project contains numerous
violations of such national and international copyright laws as are typically held
in esteem by the legal community.

Borrowed Code

1.

2.

© »® N o

10.

an OpenGL MD3 loader, adapted from that available at planetquake.com

libjpeg, libtiff, libtarga; for image loading. We rolled our own texture
management code. Hyarr.

FMOD for sound.

Our bugfixed version of A. Willmott’s SVL, which was used only sparingly,
as most math turned out to be integer-based.

Lib3ds, which we wound up using not at all, but which remains nonetheless
in our source tree.

Borrowed Content

Textures, from various web sources, and Al Reed
MD3 models, from planetquake.com

MP3 music, from various artists

Sound effects from various sources

Three Key Technical Challenges

1.

Managing game state across a network. Accomplished by an effective
design which gave the server the task of being the synchronizer of last
resort while providing clients the flexibility to independently target char-
acter actions in the event that server data was not immediately available.
This design turned out to be a reasonable tradeoff between ease of coding,
latency, and quality of rendered output.



2. Character navigation. Managing path planning and physics across a chang-
ing terrain—a broad, modular path system was created and used to man-
age most character movement. Care was taken with regard to state syn-
chronization, efficiency, and game balance-a particular concern was that
pathfinding is easy to make powerful enough to detract from game chal-
lenge. Measures to ensure determinism, clever data structure manage-
ment, and path limitations (caps to distance and number of nodes) were
used to address these concerns.

3. Dynamic terrain. The requirements of the game called for a system that
could support additions and deletions of terrain in regular volumes. Early
on this was translated into quantizing the terrain and having all additions
and deletions take place on some smallest indivisible scale. We repre-
sented this using a full quadtree rendered as a seamless triangle mesh.
Much difficulty was encountered eliminating T-joints from the mesh, and
rendering it in a reasonably fast way. Ultimately, texture-order traversal
was selected.

Postmortem

Three (+1) things that went right

1. Application-level, packet-based network I/0. Our system would pre-buffer
data frames from the network stream, and provide parsing and unparsing
in an automated way. At critical times, this allowed us to modify our
protocol without having to re-write I/O functions.

2. Weekly planning meetings and explicit coordination. We established a dis-
cipline of meeting regularly — at least one formal meeting per week. At
these sessions we reviewed status and provided short-term goals within the
context of larger project milestones; also, labor was divided and balanced.

3. Mutual motivation. Both partners were mutually motivated by a project
design which was interesting to them both. This was largely due to good
communication early on, in the planning phases, which caused the project
to be something that both partners felt a sense of ownership for. (4)

4. Tight, flexible code; code of the sort upon which you might expect to have
a meal served your mother. Good coding skills and modularity allowed us
to completely repurpose our game engine (from a race-to-a-goal game to a
capture-the-flag game) in the three hours just before the deadline — proof
that foresight can pay off in the long run.

Things that went wrong

1. Not anticipating that our original game design wasn’t going to be fun. We
became too caught up in enjoying playing around with the technology



we’d created that we lost sight our game objective. Our original design
failed to provide much interaction between players — typically, only when
they passed each other at a single halfway point while following opposite
paths. Earlier prototyping would have eliminated the need for last-minute
repurposing.

. Animation overkill. Our original plan called for a skeletal animation pack-
age using 1ib3ds. This was overkill, as our project requirements only in-
cluded the playback of a small set of animations, and no dynamic skeletal
animations. It was a mistake to not realize this at the outset — the advice
against building swiss army knives rings true

. Reliance on available content. We ought to have had a more comprehensive
approach to designing a game and storyline. We let available content
largely determine our game’s appearance. Having at the outset a stronger
idea of what’s desired would have been more efficient and probably led to
a higher quality product.



