A* - *Informed Search* 15-491, Fall 2008

Manuela Veloso Carnegie Mellon

(Thanks to past instructors and several book authors)

Uninformed Search Complexity

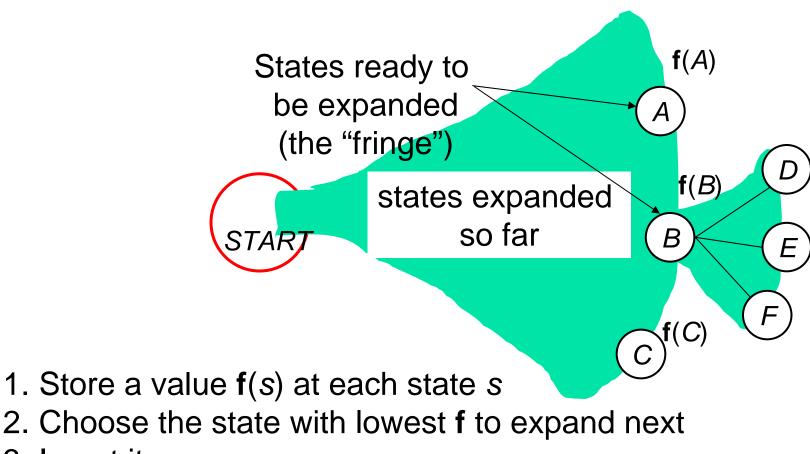
- *N* = Total number of states
- B = Average number of successors (branching factor)
- L = Length for start to goal with smallest number of steps
- Q = Average size of the priority queue
- *Lmax* = Length of longest path from *START* to any state

	Algorithm	Complete	Optimal	Time	Space
BFS	Breadth First Search	Y	Y, If all trans. have same cost	O(Min(<i>N</i> , <i>B</i> ^L))	O(Min(<i>N</i> , <i>B</i> ^L))
BIBFS	Bi- Direction. BFS	Y	Y, If all trans. have same cost	O(Min(<i>N</i> ,2 <i>B^{L/2}</i>))	O(Min(<i>N</i> ,2 <i>B</i> ^{L/2}))
PCDFS	Path Check DFS	Y	N	O(<i>B^{Lmax}</i>)	O(<i>BL_{max}</i>)
MEMDF S	Memorizing DFS	Y	N	O(Min(<i>N</i> , <i>B^{Lmax}</i>))	O(Min(<i>N</i> , <i>B^{Lmax}</i>))
IDS	Iterative Deepening	Y	Y, If all trans. have same cost	O(<i>B</i> ^{<i>L</i>})	O(BL)

Uninformed vs Informed

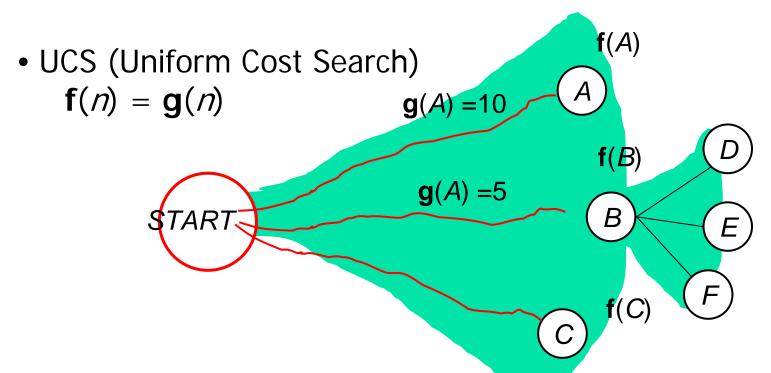
- Uninformed only guided by
 - successor relationships
 - topological structure (leftmost,...)
 - Iength as number of nodes
- Informed
 - assume cost of edges
 - more knowledge?

Search Revisited



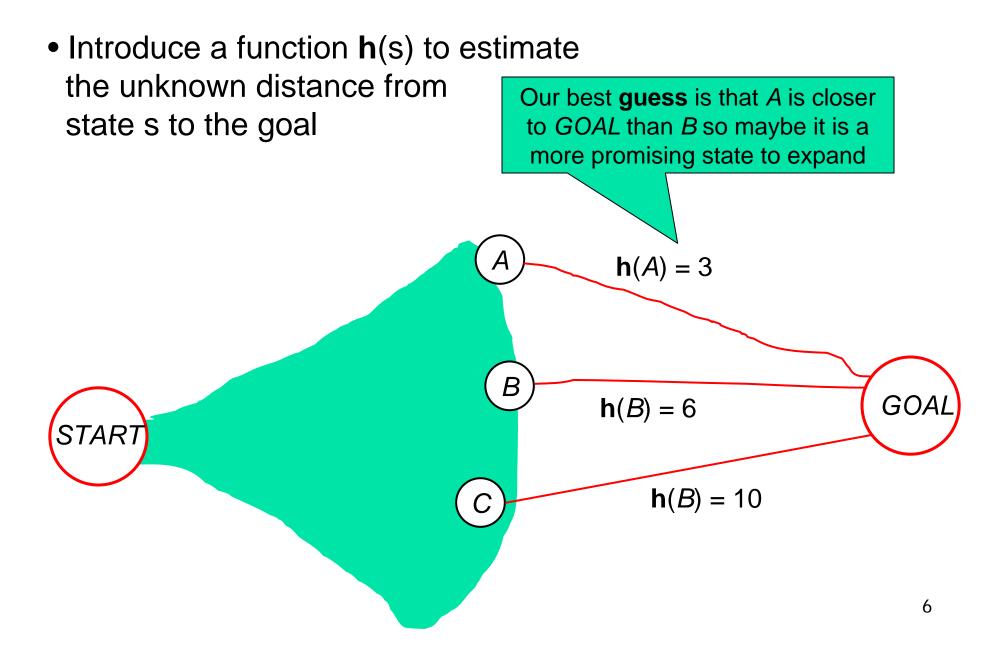
3. Insert its successors

If f(.) is chosen carefully, we will eventually find the lowest-cost sequence



- g(n) cost of each node already expanded length of shortest path from START to n
- Implementation Store open successor states (waiting to be expanded) in a *priority queue* for efficient retrieval of minimum f
- Optimal → Guaranteed to find lowest cost sequence, *but* guidance is about known path...

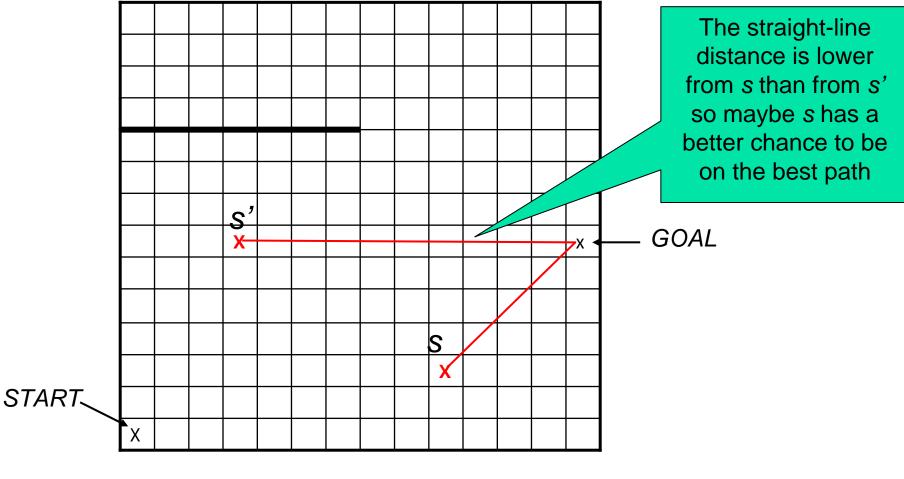
Estimate "Cost" to Goal



Heuristic Functions

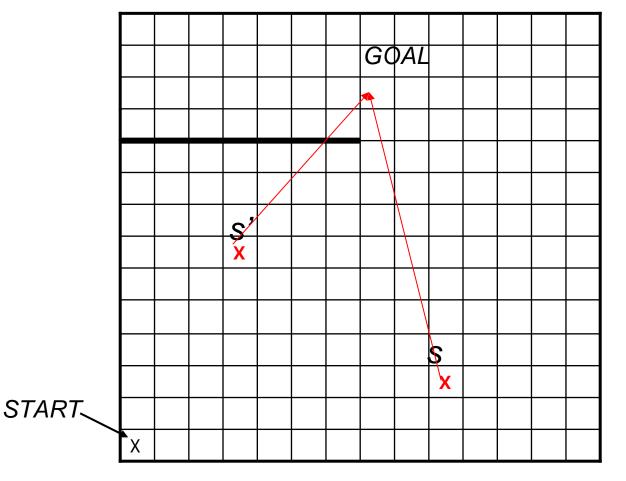
- h is a *heuristic* function for the search problem
- h(s) = estimate of the cost of the shortest path from s to GOAL
- h cannot be computed solely from the states and transitions in the current problem → If we could, we would already know the optimal path!
- h(.) is based on external knowledge about the problem \rightarrow *informed* search
- Questions:
 - 1. Typical examples of h?
 - 2. How to use h?
 - 3. What are desirable/necessary properties of h?

Heuristic Functions Example



h(s) = Euclidean distance to GOAL

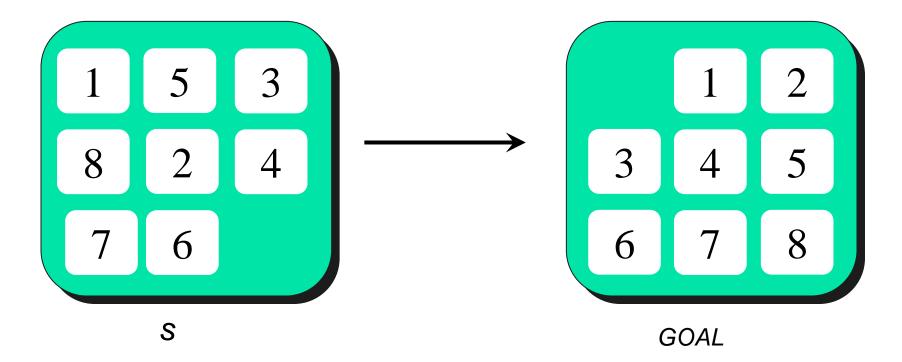
Heuristic Functions Example



h(s) = Euclidean distance to GOAL

• Euclidean distance is an heuristic.

Heuristic Functions Example



How could we define h(s)?

Misplaced titles: $h_1(s) = 7$

Manhattan distance: $h_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$

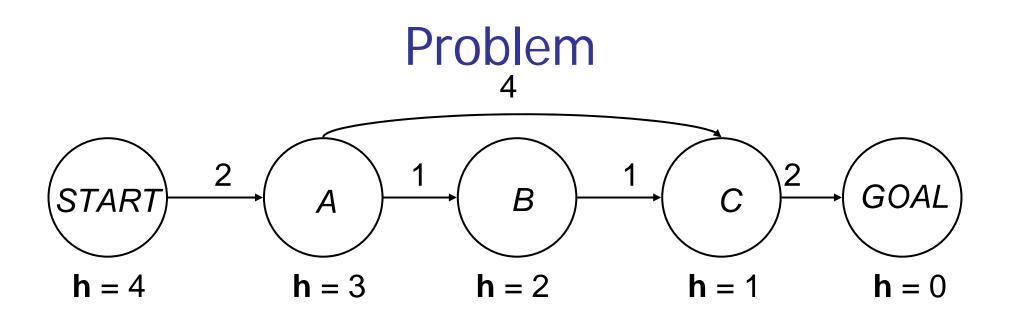
GOAL

First Attempt: Greedy Best First Search

Simplest use of heuristic function: Always select the node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize *PQ* Insert *START* with value **h**(*START*) in *PQ* While (*PQ* not empty and no goal state is in *PQ*) Pop the state *s* with the minimum value of **h** from *PQ* For all *s*' in **succs**(*s*)

If *s*' is not already in *PQ* and has not already been visited Insert *s*' in *PQ* with value **h**(*s*')



- What solution do we find in this case?
- Greedy search clearly not optimal, even though the heuristic function is non-stupid

Trying to Fix the Problem f(A) = g(A) + h(A) = 13g(A) = 10h(A) = 3h(B) = 6START B GOA g(A) = 5f(B) = g(B) + h(B) = 11С

- **g**(*s*) is the cost from *START* to *s* only
- h(s) estimates the cost from s to GOAL
- Key insight: g(s) + h(s) estimates the total cost of the cheapest path from START to GOAL going through s
- \rightarrow A* algorithm

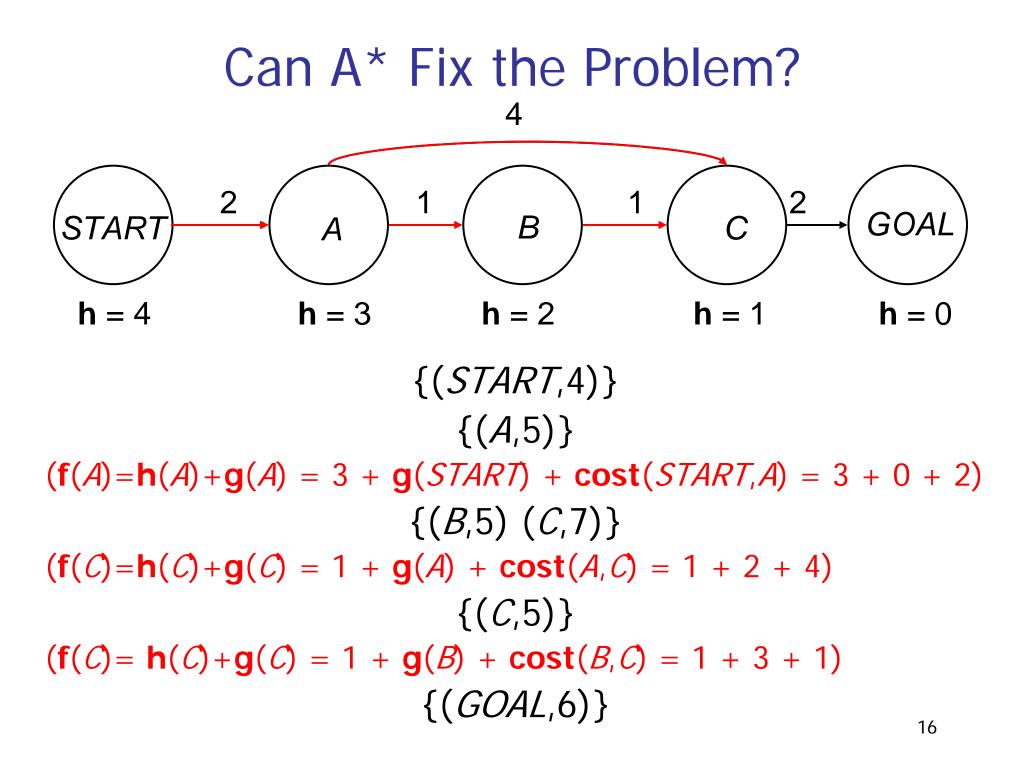
A* Algorithm

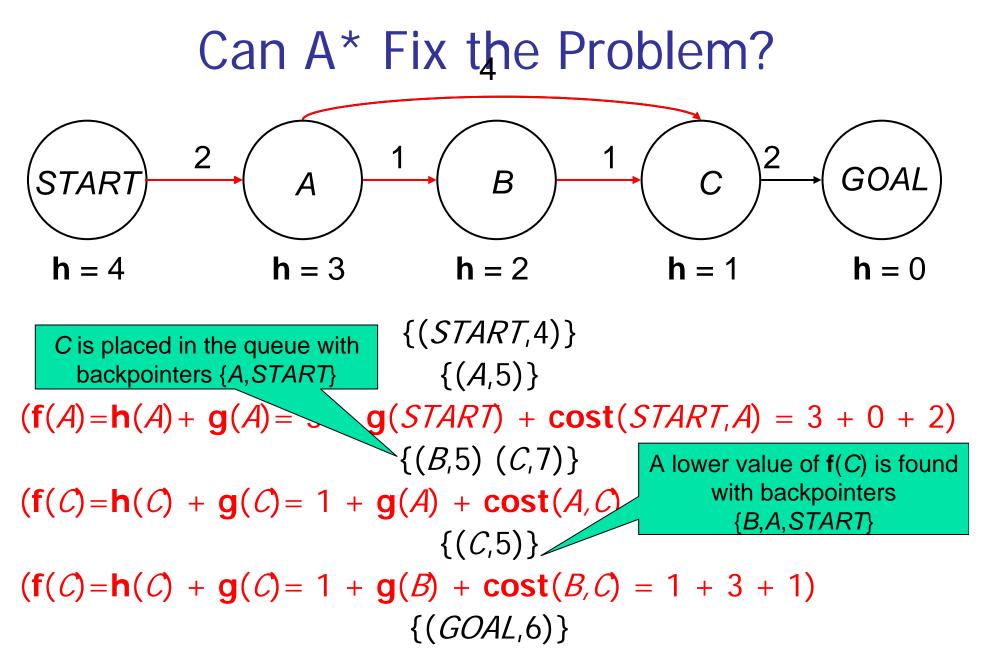
f(s) = g(s) + h(s)

heuristics

- good, less good..., alternative, efficiency
- "easy" to define...

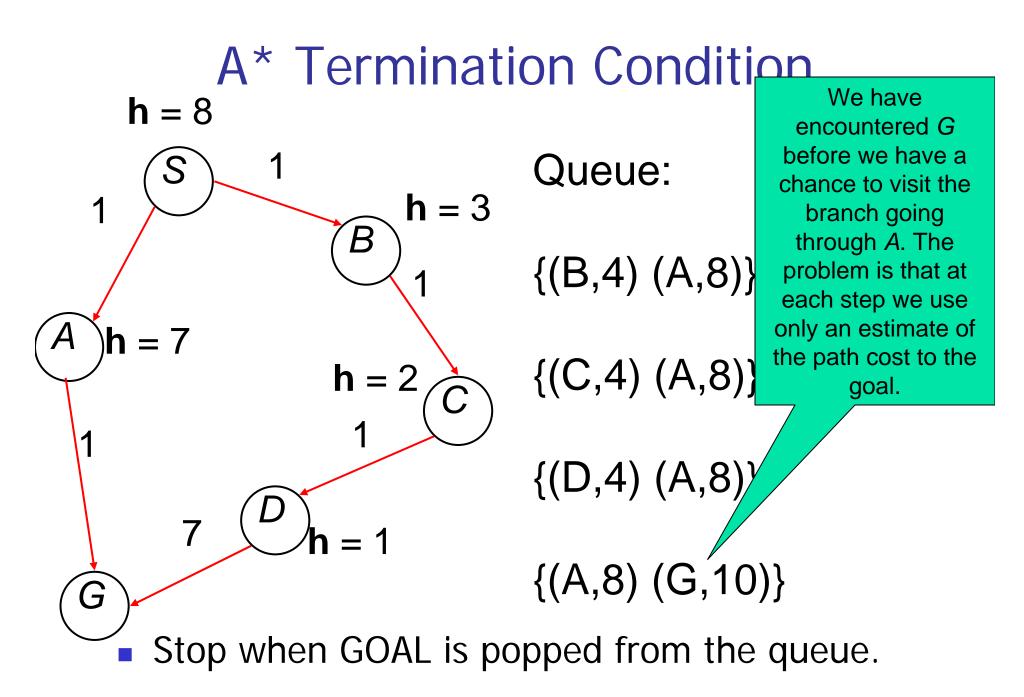
efficiency

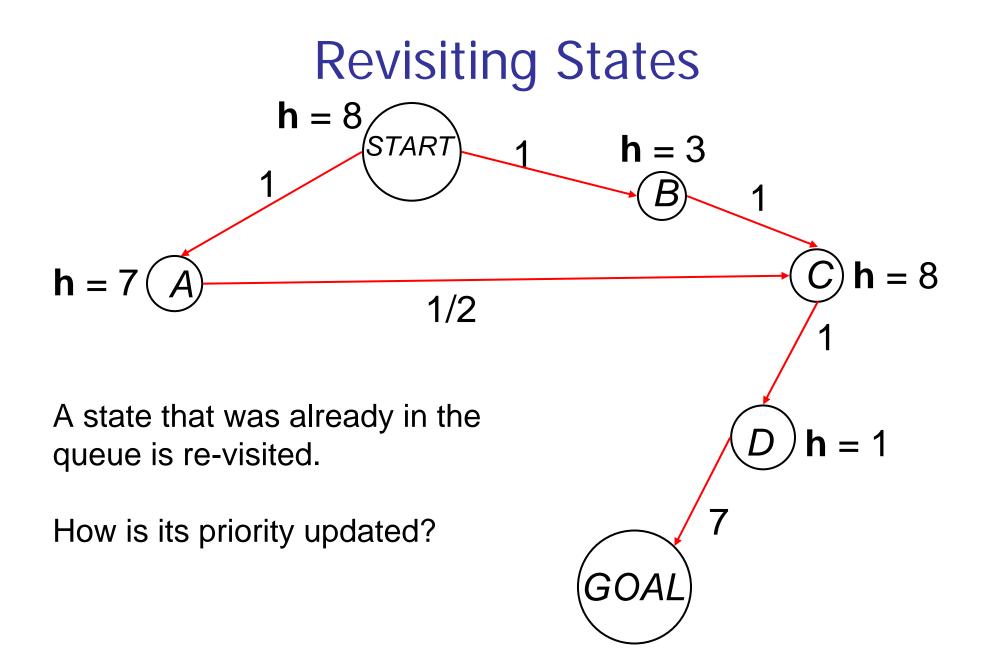


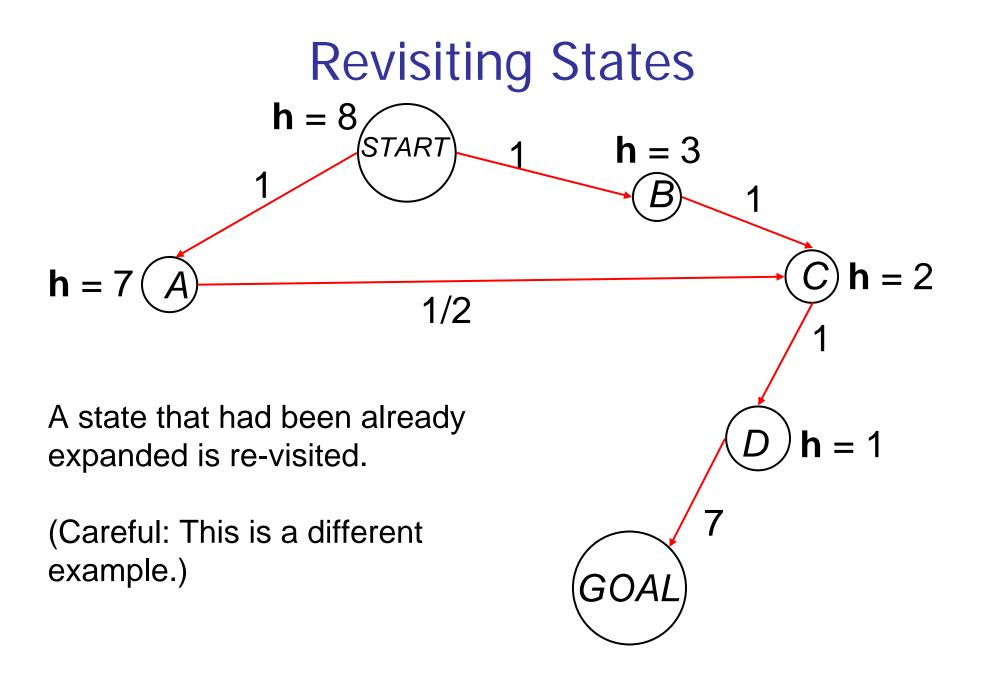


A* Core Issues

- Termination condition
- Revisiting states
- Algorithm
- Optimality
- Avoiding revisiting states
- Choosing good heuristics
- Reducing memory usage







```
Pop state s with lowest f(s) in queue

If s = GOAL

return SUCCESS

Else expand s:

For all s' in succs (s):

f(s') = g(s') + h(s') = g(s) + cost(s,s') + h(s')

If (s' not seen before OR

s' previously expanded with f(s') > f' OR

s' in PQ with with f(s') > f'

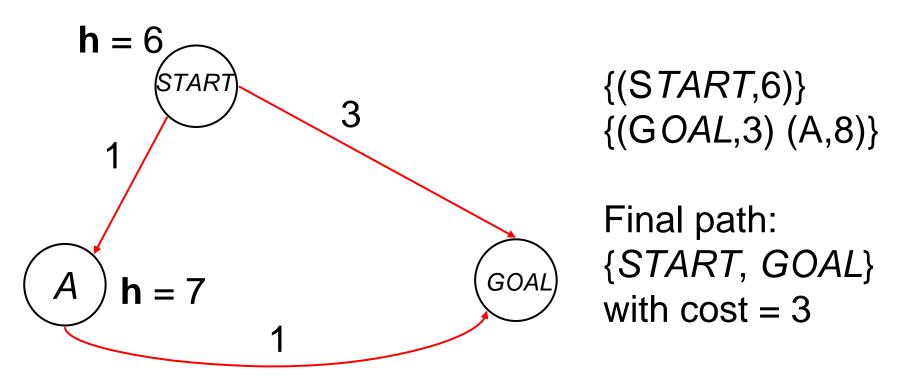
Promote/Insert s' with new value f' in PQ

previous(s') \leftarrow s

Else Ignore s' (because it has been visited and its current path cost f(s')

is still the lowest path cost from START to s')
```

Under what Conditions is A* Optimal?



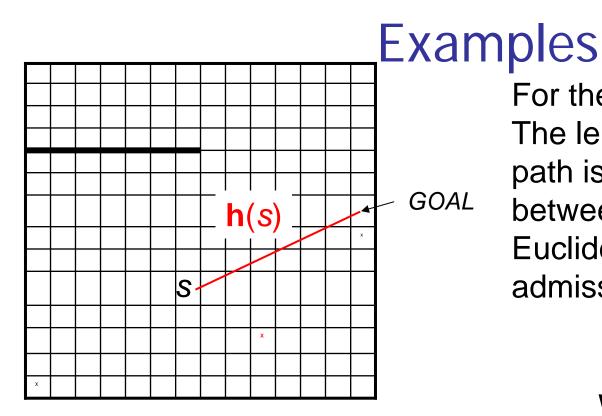
Problem: h(.) is a *poor* estimate of path cost to the goal state

Admissible Heuristics

- Define h*(s) = the true minimal cost to the goal from s
- h is admissible if

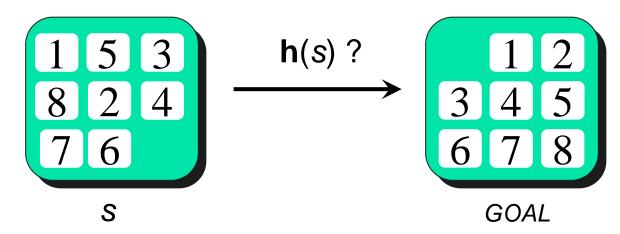
 I.e., an admissible heuristic never overestimates the cost to the goal. "Optimistic" estimate of cost to goal.

A* is guaranteed to find the optimal path if **h** is admissible. (proof in chapter 4)



For the navigation problem: The length of the shortest path is at least the distance between *s* and $GOAL \rightarrow$ Euclidean distance is an admissible heuristic

What about the puzzle?



Misplaced titles: $h_1(s) = 7$

Manhattan distance: $h_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$

26

GOAL

Comparing Heuristics

\mathbf{h}_1 = misplaced tiles		L = 4 steps	L = 8 steps	L = 12 steps
	Iterative Deepening	112	6,300	3.6 x 10 ⁶
h ₂ = Manhattan distance	A* with heuristic h 1	13	39	227
	A* with heuristic h ₂	12	25	73

- Overestimates A* performance because of the tendency of IDS to expand states repeatedly
- Number of states expanded does not include log() time access to queue

Comparing Heuristics 54 618 732 $h_1(s) = 7$ $h_2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18$ h_2 is larger than h_1 and, at same time, A* seems to be more

efficient with \mathbf{h}_{2}

 \mathbf{h}_2 dominates \mathbf{h}_1 , if $\mathbf{h}_2(s) \ge \mathbf{h}_1(s)$ for all s

For any two heuristics \mathbf{h}_2 and \mathbf{h}_1 : If \mathbf{h}_2 dominates \mathbf{h}_1 then A* is more efficient (expands fewer states) with \mathbf{h}_2

Intuition: since $h \le h^*$, a larger h is a better approximation of the true path cost

Limitations

- Computation: In the worst case, we may have to explore all the states
- The good news: A* is optimally efficient → For a given h(.), no other optimal algorithm will expand fewer nodes
- The bad news: Storage is also potentially exponential (all states)

IDS (Iterative Deepening Search)Need to make DFS optimal

- IDS (Iterative Deepening Search):
 - Run DFS by searching only path of length 1 (DFS stops if length of path is greater than 1)
 - If that doesn't find a solution, try again by running DFS on paths of length 2 or less
 - If that doesn't find a solution, try again by running DFS on paths of length 3 or less
 - Continue until a solution is found

.

Example: IDA* (Iterative Deepening A*)

- Same idea as Iterative Deepening DFS except use f(s) to control depth of search instead of the number of transitions
- Example, assuming integer costs:
- 1. Run DFS, stopping at states *s* such that $\underline{\mathbf{f}(s)} > 0$ Stop if goal reached
- 2. Run DFS, stopping at states *s* such that $\underline{\mathbf{f}(s)} > 1$ Stop if goal reached
- 3. Run DFS, stopping at states *s* such that $\underline{\mathbf{f}(s)} > 2$ Stop if goal reached

......Keep going by increasing the limit on **f** by 1 every time

- Complete (assuming we use loop-avoiding DFS)
- Optimal
- More expensive in computation cost than A*
- Memory order L as in DFS

Summary

- Informed search and heuristics
- First attempt: Best-First Greedy search
- A* algorithm
 - Optimality
 - Condition on heuristic functions
 - Completeness, efficiency
- IDA*

Nils Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw Hill (1971) Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving (1984) Chapters 3&4 Russell & Norvig