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Uninformed Search Complexity
N = Total number of states
B = Average number of successors (branching factor)
L = Length for start to goal with smallest number of steps
Q = Average size of the priority queue
Lmax = Length of longest path from START to any state

O(Min(N,2BL/2))O(Min(N,2BL/2))Y, If all trans. 
have same cost

YBi- Direction. 
BFS

BIBFS

O(BL)O(BL)Y, If all trans. 
have same cost

YIterative 
Deepening

IDS

O(Min(N,BLmax))O(Min(N,BLmax))NYMemorizing 
DFS

MEMDF
S

O(BLmax)O(BLmax)NYPath Check 
DFS

PCDFS

O(Min(N,BL))O(Min(N,BL))Y, If all trans. 
have same cost

YBreadth First 
Search

BFS

SpaceTimeOptimalCompleteAlgorithm
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Uninformed vs Informed

Uninformed – only guided by
successor relationships
topological structure (leftmost,…) 
length as number of nodes

Informed
assume cost of edges 
more knowledge?
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Search Revisited

1. Store a value f(s) at each state s
2. Choose the state with lowest f to expand next
3. Insert its successors

If f(.) is chosen carefully, we will eventually find the 
lowest-cost sequence

states expanded 
so far

D

E

F

START

f(A)

f(B)

f(C)

A

B

C

States ready to 
be expanded
(the “fringe”)
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B

f(C)

D

E

F

A

C

f(A)

f(B)

• g(n) - cost of each node already expanded
length of shortest path from START to n

• Implementation – Store open successor states (waiting to be 
expanded) in a priority queue for efficient retrieval of minimum f

• Optimal Guaranteed to find lowest cost sequence, but 
guidance is about known path…

g(A) =10

g(A) =5

• UCS (Uniform Cost Search) 
f(n) = g(n) 

START
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• Introduce a function h(s) to estimate 
the unknown distance from 
state s to the goal

START

A

B

C

GOAL

h(A) = 3

h(B) = 6

Our best guess is that A is closer 
to GOAL than B so maybe it is a 
more promising state to expand

h(B) = 10

Estimate “Cost” to Goal
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Heuristic Functions
h is a heuristic function for the search problem
h(s) = estimate of the cost of the shortest path 
from s to GOAL
h cannot be computed solely from the states 
and transitions in the current problem If we 
could, we would already know the optimal path!
h(.) is based on external knowledge about the 
problem informed search
Questions:
1. Typical examples of h?
2. How to use h?
3. What are desirable/necessary properties of h?
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Heuristic Functions Example

h(s) = Euclidean distance to GOAL

X

X

xX

START

GOAL

The straight-line 
distance is lower 

from s than from s’
so maybe s has a 

better chance to be 
on the best path

s’

s
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Heuristic Functions Example

h(s) = Euclidean distance to GOAL
Euclidean distance is an heuristic.

X

X

X

START

GOAL

s’

s
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Heuristic Functions Example 

How could we define h(s)?

28

31

6

4

7

5 2

8

3

1

6

4

7

5

s GOAL
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5 4

3

6 1 8

7 2

s
2

8

31

6

4

7 5

G
O

A
L

Misplaced titles:
h1(s) = 7

Manhattan distance:
h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
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First Attempt: Greedy Best First Search

Simplest use of heuristic function: Always select the 
node with smallest h(.) for expansion (i.e., f(s) = h(s))

Initialize PQ
Insert START with value h(START) in PQ
While (PQ not empty and no goal state is in PQ)

Pop the state s with the minimum value of h from PQ
For all s’ in succs(s)

If s’ is not already in PQ and has not already been visited 
Insert s’ in PQ with value h(s’)
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Problem

What solution do we find in this case?
Greedy search clearly not optimal, even 
though the heuristic function is non-stupid

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4
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Trying to Fix the Problem

g(s) is the cost from START to s only
h(s) estimates the cost from s to GOAL
Key insight: g(s) + h(s) estimates the total cost 
of the cheapest path from START to GOAL going 
through s

A* algorithm

START

A

B

C

GOAL

h(A) = 3

f(A) = g(A) + h(A) = 13

g(A) = 10

h(B) = 6

f(B) = g(B) + h(B) = 11 g(A) = 5
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A* Algorithm

f(s) = g(s) + h(s)

heuristics
good, less good…, alternative, efficiency
“easy” to define…

efficiency
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Can A* Fix the Problem?

{(START,4)} 
{(A,5)}             

(f(A)=h(A)+g(A) = 3 + g(START) + cost(START,A) = 3 + 0 + 2)
{(B,5) (C,7)}   

(f(C)=h(C)+g(C) = 1 + g(A) + cost(A,C) = 1 + 2 + 4)
{(C,5)} 

(f(C)= h(C)+g(C) = 1 + g(B) + cost(B,C) = 1 + 3 + 1)
{(GOAL,6)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4
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Can A* Fix the Problem?

{(START,4)}
{(A,5)}             

(f(A)=h(A)+ g(A)= 3 + g(START) + cost(START,A) = 3 + 0 + 2)
{(B,5) (C,7)}   

(f(C)=h(C) + g(C)= 1 + g(A) + cost(A,C) = 1 + 2 + 4)
{(C,5)} 

(f(C)=h(C) + g(C)= 1 + g(B) + cost(B,C) = 1 + 3 + 1)
{(GOAL,6)}

START A B C GOAL

h = 4 h = 3 h = 2 h = 1 h = 0

2 1 1 2

4

C is placed in the queue with 
backpointers {A,START}

A lower value of f(C) is found 
with backpointers

{B,A,START} 
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A* Core Issues

Termination condition
Revisiting states
Algorithm
Optimality
Avoiding revisiting states
Choosing good heuristics
Reducing memory usage
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A* Termination Condition

Stop when GOAL is popped from the queue.

Queue:

{(B,4) (A,8)}

{(C,4) (A,8)}

{(D,4) (A,8)}

{(A,8) (G,10)}

We have 
encountered G

before we have a 
chance to visit the 

branch going 
through A. The 

problem is that at 
each step we use 

only an estimate of 
the path cost to the 

goal.

S

A

D

B

C

G

1
1

1

1

7

1

h = 3

h = 2

h = 1

h = 7

h = 8
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Revisiting States

1

h = 7 A C

B
START

D

GOAL

1
1

1

7

h = 8
h = 3

h = 8

h = 1

1/2

A state that was already in the 
queue is re-visited.

How is its priority updated?
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Revisiting States

1

h = 7 A C

B
START

D

GOAL

1
1

1

7

h = 8
h = 3

h = 2

h = 1

1/2

A state that had been already 
expanded is re-visited.

(Careful: This is a different 
example.)
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Pop state s with lowest f(s) in queue
If s = GOAL

return SUCCESS
Else expand s:

For all s’ in succs (s):           
f(s’)= g(s’) + h(s’) = g(s) + cost(s,s’) + h(s’)
If (s’ not seen before OR

s’ previously expanded with f(s’) > f’ OR
s’ in PQ with with f(s’) > f’)
Promote/Insert s’ with new value f’ in PQ

previous(s’) s
Else Ignore s’ (because it has been visited and its current   path cost f(s’) 

is still the lowest path cost from START to s’)
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Under what Conditions is A* Optimal?

Problem: h(.) is a poor estimate of path 
cost to the goal state

START

A GOAL

h = 6

h = 7

1

1

3
{(START,6)}
{(GOAL,3) (A,8)}

Final path: 
{START, GOAL}
with cost = 3
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Admissible Heuristics
Define h*(s) = the true minimal cost to the 
goal from s
h is admissible if

h(s) <= h*(s) for all states s

I.e., an admissible heuristic never 
overestimates the cost to the goal. 
“Optimistic” estimate of cost to goal.

A* is guaranteed to find the optimal path       
if h is admissible. (proof in chapter 4)
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Examples

X

X

x

GOAL

s

h(s)

For the navigation problem:
The length of the shortest 
path is at least the distance 
between s and GOAL
Euclidean distance is an 
admissible heuristic

28
31

6
4

7

5 2

8
3

1

6
4
7

5

s GOAL

h(s) ?

What about the puzzle?
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5 4

3

6 1 8

7 2

s
2

8

31

6

4

7 5

G
O

A
L

Misplaced titles:
h1(s) = 7

Manhattan distance:
h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
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Comparing Heuristics

Overestimates A* performance because of the 
tendency of IDS to expand states repeatedly
Number of states expanded does not include 
log() time access to queue

732512A* with 
heuristic h2

2273913A* with 
heuristic h1

3.6 x 1066,300112Iterative 
Deepening

L = 12 
steps

L = 8 stepsL = 4 steps
h1 = misplaced tiles

h2 = Manhattan 
distance

Example from Russell&Norvig
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Comparing Heuristics

h1(s) = 7
h2(s) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
h2 is larger than h1 and, at same time, A* seems to be more 

efficient with h2. 

5 4

3
6 1 8
7 2

s
2

8
31

6
4

7 5
G

O
A

L

h2 dominates h1, if h2(s) >= h1(s) for all s

For any two heuristics h2 and  h1 : 
If h2 dominates h1 then A* is more efficient (expands 
fewer states) with h2

Intuition: since h <= h*, a larger h is a better approximation of the true path cost
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Limitations

Computation: In the worst case, we may 
have to explore all the states 

The good news: A* is optimally efficient 
For a given h(.), no other optimal 

algorithm will expand fewer nodes

The bad news: Storage is also potentially 
exponential (all states)
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IDS (Iterative Deepening Search)
Need to make DFS optimal

IDS (Iterative Deepening Search):
Run DFS by searching only path of length 1 
(DFS stops if length of path is greater than 1)
If that doesn’t find a solution, try again by 
running DFS on paths of length 2 or less
If that doesn’t find a solution, try again by 
running DFS on paths of length 3 or less
………..
Continue until a solution is found
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Example: IDA* (Iterative Deepening A*)
Same idea as Iterative Deepening DFS except use f(s) to 
control depth of search instead of the number of transitions
Example, assuming integer costs:

1.   Run DFS, stopping at states s such that f(s) > 0
Stop if goal reached

2.   Run DFS, stopping at states s such that f(s) > 1
Stop if goal reached

3.   Run DFS, stopping at states s such that f(s) > 2
Stop if goal reached

……..Keep going by increasing the limit on f by 1 every time

Complete (assuming we use loop-avoiding DFS)
Optimal
More expensive in computation cost than A*
Memory order L as in DFS
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Summary
Informed search and heuristics
First attempt: Best-First Greedy search
A* algorithm

Optimality
Condition on heuristic functions
Completeness, efficiency

IDA*

Nils Nilsson. Problem Solving Methods in Artificial 
Intelligence. McGraw Hill (1971)
Judea Pearl. Heuristics: Intelligent Search Strategies for 
Computer Problem Solving (1984)
Chapters 3&4 Russell & Norvig


