
Behaviors

Manuela Veloso
CMRoboBits, 15-491, Fall 2008

http://www.andrew.cmu.edu/course/15-491
Computer Science Department
Carnegie Mellon University



15-491 CMRoboBits

Behaviors as Functions

Domain of state space
(continuous or discrete)

Range of robot actions 
(including those of the team)

nX

X
X

M
2

1

ku

u
u

M
2

1

Define a function 
which triggers actions 
based on state…

…with the intention 
of ending up in a 
new desired state 



15-491 CMRoboBits

“Thinking”… Selecting Actions

Sensory data as input
“Behaviors” as processing of input to 
select actions
Actuators perform the actions



15-491 CMRoboBits

Behaviors Approaches
There are three main approaches to behaviors

Reactive 
Try to respond directly to the environment

Deliberative
Think ahead about actions before deciding on one 
to execute (included Planning as special case)

Hybrid
Combination of the above



15-491 CMRoboBits

Reactive Behaviors
Reactive behaviors map from sensors to actions

No memory
State becomes Internal state:

current sensory data + limited memory 
Advantages

Very responsive to changes in environment
Simple and easy to understand
Smooth control changes in response to smooth 
changes in sensor values

Disadvantages
Can’t perform different actions from the same state
Can get stuck
Don’t scale well to complex tasks



15-491 CMRoboBits

Types of Reactive Behaviors

Reactive behaviors come under a wide 
variety of names
Regardless of the names, they typically 
behave in the same general way
An example behavior system:

Motor schemas



15-491 CMRoboBits

Motor Schemas
A motor schema is a mapping from sensors to 
a force vector whose direction and value 
dictates the robot’s next motion
Each motor schema calculates a force on the 
robot due to some constraint
The force vectors are summed to get the 
total force on the robot
Example: navigation in the presence of 
obstacles

One motor schema produces force towards goal
Second motor schema produces force away from 
obstacles



15-491 CMRoboBits

Motor Schemas

Robot Obstacle

Robot

Robot
Goal

Goal vector
Avoidance vector
Resulting vector

1

2

3



15-491 CMRoboBits

Combining Reactive Behaviors
Reactive behaviors don’t scale very well
Reactive behaviors need to be combined into 
a larger behavior system
Some combination ideas include:

Blending – motor schemas is an example of this
Competition – behaviors compete for control
Subsumption – reactive behaviors selectively take 
control
Sequencing – reactive behaviors are executed in a 
sequence based on a higher-level controller



15-491 CMRoboBits

Blending
Behaviors output an activation magnitude and 
direction
Multiple behaviors have their activation 
values merged into a single unified value
Easy to implement as long as sensor values 
can be described by “forces” with direction 
and magnitude
Problem: equal but opposing forces can 
cancel each other out



15-491 CMRoboBits

Blending – Same as Motor Schemas

Robot
Obstacle

Robot

Robot
Goal

Goal vector
Avoidance vector
Resulting vector

1

2

3



15-491 CMRoboBits

Competition

Similar to blending, but uses “winner-take-all”
for activation
Reactive behaviors compete for control of the 
robot
Very responsive and adaptable to different 
behavior sets
Problem: oscillations could occur when two 
behaviors have very similar strengths



15-491 CMRoboBits

Competition

Robot
Obstacle

Robot Robot

Goal

Goal vector
Avoidance vector

Robot
Robot

1

2

3

4

5



15-491 CMRoboBits

Subsumption

Provide a strict priority ordering for the 
behaviors
All behaviors read from sensors and 
output values to actuators
Higher priority behaviors override the 
outputs from lower-level behaviors
Better scalability due to strict ordering 
and notion of abstraction



15-491 CMRoboBits

Subsumption

Robot
Obstacle

Robot Goal

Goal vector
Wall follow vector

Robot
Robot

1

2
3

4



15-491 CMRoboBits

Sequencing
Run only a single reactive behavior at a time 
and switch the active behavior based on 
change in robot/environment state
Convenient notation for sequencing the 
behavior is a finite state machine (FSM)
Each state of the FSM has an associated 
reactive behavior
Each transition of the FSM has a rule that 
must be satisfied before a transition can 
occur
Approach used by CMRoboBits code



15-491 CMRoboBits

Behaviors as Finite State Machines 

Score Search

Approach

Recovernot see ball

next to ball

see ball not see ball

timeout

see ballnot next to ball



15-491 CMRoboBits

Behavior FSM Semantics
Each behavior is a function which must return 
a value every time new sensor data is called
Takes as input the sensor features and 
returns the actuator commands
Inside the function is the FSM

First, remember which state the FSM is in
Do computations on persistent values

Time in state, as an example

Decide whether to exit the function or whether to 
transition to a new state

Why shouldn’t the FSM make the transition state and 
then exit?



15-491 CMRoboBits

Sequencing Advantages

Problems with oscillation are greatly 
reduced by the transition rules
Can be very reactive to environment
Can select different actions from same 
perceptions using context and memory
Easy to chain together into larger 
actions



15-491 CMRoboBits

Hierarchy – Adding Scale

In order to scale to large behaviors, we 
can reuse collections of lower-level 
behaviors

Libraries of lower-level behaviors form the 
building blocks for all robot behaviors

Each state of FSM can be either a single 
reactive behavior, or another FSM with 
its own behaviors (or FSMs)



15-491 CMRoboBits

Example of Behavior/FSM

ON GROUND

BEHAVIOR

LIFTED STRAIGHT

BEHAVIOR

TILTED

BEHAVIOR

AIBO lifted

AIBO back on ground

AIBO lifted

AIBO tilted

AIBO back 
on groundAIBO tilted

TROT RUNWALKSET LED-
MIDDLE-LEFT

SET LED-MIDDLE-
RIGHT

Tilted left Tilted right

Decompositional

Sequential



15-491 CMRoboBits

Implementation Details
Behavior design is more of an art
Good behaviors produce smoothly varying 
control signals
Control signals that oscillate lead to poor 
control performance

Control target changes before controller can 
achieve the previous target

Oscillation in behaviors needs to be avoided 
because it will lead to oscillations in control 
signals



15-491 CMRoboBits

Problems of Oscillation
Behavior design can feel like more of an art
Good behaviors produce smoothly varying 
control signals
Control signals that oscillate lead to poor 
control performance

E.g. Control target changes before controller can 
achieve the previous target

Oscillation in behaviors needs to be avoided 
because it will lead to oscillations in control 
signals



15-491 CMRoboBits

Oscillation

Robot Obstacle Goal

Goal vector
Avoidance vector

Robot1 2

Robot Obstacle Goal1



15-491 CMRoboBits

Avoiding Oscillation
If oscillation occurs, one choice is to merge 
the states where the oscillation is occuring
A more general solution is to add hysteresis
to the transition rules

A system exhibits hysteresis when the behavior 
depends not only on the current state but also on 
its history
This refers to the creation of a buffer zone 
between states

Important for first sensors homework



15-491 CMRoboBits

Example: When to Invoke the 
Different Behaviors?

Robot Obstacle GoalRobot

1

2

Challenge: sensors are noisy , actuation can be noisy

Let’s collect some data from a robot driving 
towards and away from an obstacle.



15-491 CMRoboBits

Raw Data



15-491 CMRoboBits

Handling Uncertainty

Sensory data is noisy
How to decide between two conflicting 
sensor readings?
One solution is thresholding

Question: is a single value a good solution?
T1



15-491 CMRoboBits

Naïve Control



15-491 CMRoboBits

Handling Uncertainty
Two threshold method: hysteresis

The lagging of an effect behind its cause

The state switches from blue to red when 
values rise above T2. It switches from red to 
blue when values fall below T1.

T1 T2



15-491 CMRoboBits

Hysteresis



15-491 CMRoboBits

Behavior Design Principles
Design behavior in stages

Work on only one state at a time
Start with initial “entry” state

Continue with each successive state
Test and debug one transition at a time

Make one change at a time and thoroughly 
test the states and transitions
Debug in which state the robot is

Robot should “say” where it is, both control state 
and sensing



15-491 CMRoboBits

Behaviors: Working within the 
Perception/Cognition/Action Loop

Sensors obtain data at a fast rate
One pass through the loop should not 
slow this processing down

Too much time in cognition might cause 
data data be missed or lost

Computation cannot take “too much”
time…



15-491 CMRoboBits

Summary – Next Class

Behaviors map sensors to actuators
Reactive behaviors
Next class – deliberative behaviors, 
planning


