CMRoboBits: Creating an Intelligent AIBO Robot *Multi-Robot Systems II*

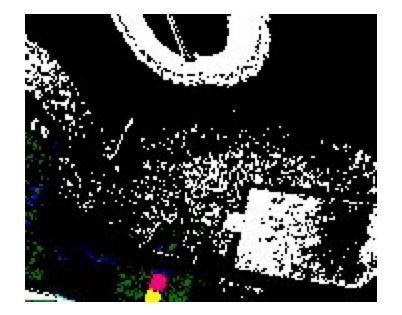
Manuela Veloso 15-491, Fall 2007 http://www.andrew.cmu.edu/course/15-491 Computer Science Department

Carnegie Mellon

Four-Legged (AIBO) Robot Soccer

- Teams of 4 robots (initially 3 robots)
- Remarkable hardware SONY AIBO robots
- Sensing, computing, and communication onboard

15-491 CMRoboBits


Teamwork

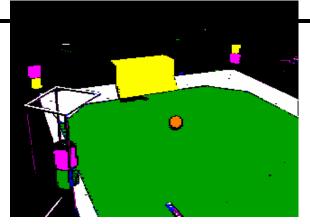
- Teamwork without communication
 - Team is set of individual robots
 - View of the world from own sensors
 - Teamwork achieved through roles
 - Attacker: "Can I see the ball? Go to Ball. Where am I and where is the goal? Kick ball to goal."
 - Goalie: "Can I see the ball? Is the ball next to me? Clear the ball. Where am I? Go back to defend goal."
- Teamwork with communication?

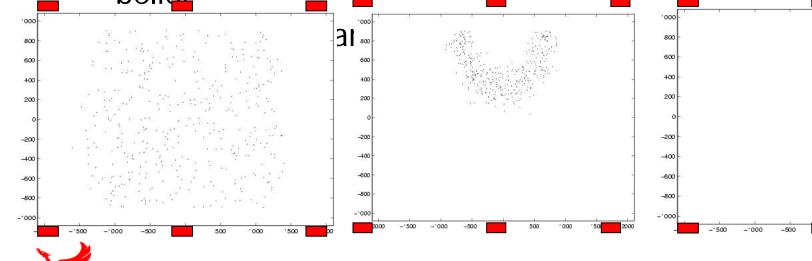
Own sensors, communication, roles

Vision

15-491 CMRoboBits

Sensor Processing


Goal:


- Estimate the state of the environment
- Abstract from sensor signals to symbols
- ...orange ball in front... wall at 2m distance... door on the left... green light... person in front... personX entering the room...

Robot's Position – Localization

- Apriori: motion model, map
- *Given*: actual motion, sensing
- Compute: probabilistic distribution of position belief

15-491 CMRoboBits

State Information

- State Localization
 - Position in *absolute* referential space
- State further processed sensory data
 - "big" vector of task-relevant quantities:
 - Relative distance to task-relevant objects
 - Ball, goal, other robots, landmarks

Multi-Robot World Modeling

- Communication with latency
- Noise in perception/assessment
- Multiple (variable) teammates

Challenge: Combine local and communicated information to form a coherent world model

Common World Model

Shared information:

 Localization plus relative information produces shared global coordinates of objects

Discussion

- Impact of perceptual errors
- Single versus multiple robots

Use of Shared Information

- Tracking
- Position of seen and unseen object
- Example:
 - Where is the ball?

Modeling from probabilistic effects of robot's own actions

Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen

"Level 1" Prediction

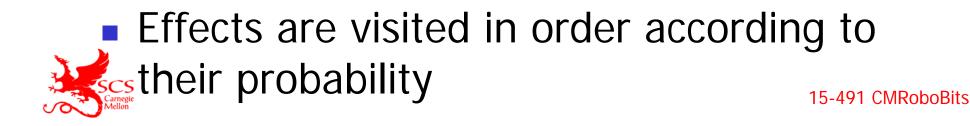
Robot predicts position of *temporally* unseen/lost object through:

State MEMORY and MODEL of object motion and effect of actions

Action Models

- Actions are described in terms of
 - Preconditions
 - Position of the ball with respect to the robot
 - Position of the robot on the field
 - Probabilistic effects
 - Expected final position of the ball mean, variance

Modeling from probabilistic effects of robot's own actions


Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen

"Level 2" Prediction

Robot predicts position of *temporally* unseen/lost object through:

State MEMORY and MODEL of object motion and action, which includes probabilistic effects

Modeling from teammate communicated observation

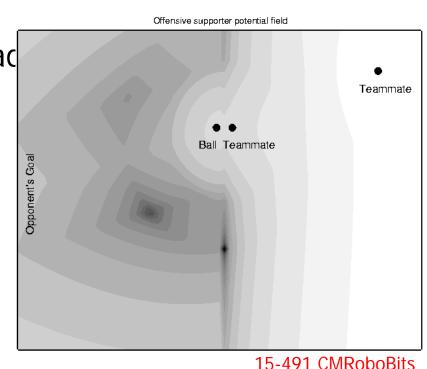
Manuela Veloso, Paul E. Rybski, Sonia Chernova, Colin McMillen

15-491 CMRODOBITS

"Level 3" Prediction

Robot predicts position of *temporally* unseen/lost object through:

State MEMORY and MODEL of object motion and action, which includes probabilistic effects, and **information from teammates**


State Estimation RMH: Ranked Multi-Hypothesis

- Use own perception
- If object not in own view:
 - Generate a probabilistic set of hypotheses
 - Nondeterministic models of own actions
 - Teammate shared sensory data
 - • •
 - Rank the hypotheses according to a confidence and utility function
 - Visit in order the ranked hypotheses

Model, Multi-Robot Coordination

- 1. Role assignment
 - Primary attacker, offensive supporter, defensive supporter
- <text>

15-491 CMRoboBits

Summary

- Teamwork
- Share and use of multi-source information
 - RMH State estimation
 - Ranked probabilistic effects, possible errors in communicated information
- Use
 - Tracking
 - Team coordination

