Vision 2 15-491 CMRoboBits

Manuela Veloso And Brett Browning

Fall 2007

All images contained herein are either from the instructor(s) own work or publicly available on the web.

Outline

- Recap on Vision 1
- High level vision/perception ideas
- Simple object detection
- Tracking
- Summary

Vision Algorithms Overview

- For robots, vision used for two key problems
- Finding objects
 - Object detection, recognition, and tracking
- Understanding structure
 - Structure from motion/stereo
 - SLAM
 - Structure/shape from texture

Typical Parts of a Vision System

Cameras As Sensors

- Most machine vision cameras consist of
 - Photon sensitive sensor elements with filters
 - Mirror(s) and/or lens(es) to manipulate light
 - Digital frame capture electronics
 - Optionally structured light sources

Parts of a Digital Camera

Image Example

Color Spaces

- Many ways to represent color
 - RGB (red, green, blue), nRGB
 - YUV, or Y Cr Cb (luminance + chroma)
 - HSV or HSL (hue, saturation, value)

2D Pin-hole Camera

• Using similar triangles

All Together Extrinsic parameters ${\mathcal X}$ $\int_{1}^{n} y \propto KR$ Intrinsic parameters $K = \begin{bmatrix} f \alpha_x & 0 & c_x \\ 0 & f \alpha_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$

Convolution Example

- Operator is a matrix
- Result is another image

Apply operator at a location in the image

Fast Color Segmentation

• Classify each pixel based on color using predefined tables, then group pixels into blobs

Symbolic color value: {Unknown, Red, Yellow, Blue, Green, Floor}

High Level Vision

High Level Vision Goals

- Populate world model for robot
- Output is the input for behaviors and/or planning
- Key challenges
 - Signal to noise ratio
 - Tracking and data association
 - Inferring non-observable information
 - Estimating and using confidence bounds

Two Types of Output

- Objects
 - Pose, motion, articulation, type
 - Result of object detection and tracking
- World structure
 - 2D occupancy grids, 2.5D/3D maps
 - Textured surfaces, point clouds
 - Vehicle pose/trajectory

Simple Object Detection

- Single colored object
 - Low-level vision produces regions
 - Look for region of right size/shape/color
- This is pattern recognition or classification!

15-491: Lecture 6, Vision 2

Classification Recap

- Supervised learning
- Input is x output is y
 Classification: y={-1,1}
- Given labeled training examples
 - $= \{(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)\}$
 - Learn a classifier: f(x) that minimizes loss function
 L(f(x),y) over data e.g. sum squared error

Classifiers

- Many possibilities
 - Support Vector Machines (e.g. libsvm)
 - Neural networks, Decision trees (e.g. C4.5)
 - Naïve Bayes, Nearest neighbor, ...
- Can use dimensionality reduction – PCA, kernel-PCA
- Can use quantization methods

 LVQ, K-means

An Example

. . .

Important Points

- Data collection
 - Needs training data distribution to match expected real distributions
 - Training should include range of lighting, pose, conditions etc.
- Detection needs to be fast for real-time application

Multiple Components

- Single region is a bit limiting...would like to have multi-region objects
- More complex recognition process
 - Each "feature" has particular properties
 - "Features" have geometrical relationship
- Recognition issues
 - How to recognize "parts"
 - How to recognize whole from parts
 - Which comes first?

Multi-part Objects

Matching Geometry

- Need to account for
 - Distortions
 - Missed detections
- Hough-style approach
 Voting on model configuration
- Graphical model style approach
 Hidden Markov Model
- Ransac style approach
- Match based on simple transform: Euclidean, Affine, Fall 2007 Perspective 15-491: Lecture 6, Vision 2

Tracking

- The need
 - May not detect object in every frame
 - Direct estimates may be noisy
 - Unobserved parameters (e.g. speed)
- Approaches
 - Simple linear filters
 - Kalman filters

Simple Filtering

• Take a locally weighted average of recent observations

Could weight averages
 – FIR: Finite Impulse Response Filter

Pros/Cons

- Advantages
 - Very simple, easy to implement
 - Will not "over-estimate" (bounded error)
 - Can estimate confidence by local statistics
 - e.g. variance in window
- Disadvantages
 - Latency a function of window size
 - Doesn't give extra parameters
 - e.g. speed

Can We Do Better?

- Yes, if we have a model of the system
- Enter Kalman filtering...
 - Reference:

http://www.cs.unc.edu/~tracker/ref/s2001/kalman/ir

• Key idea

Basic Idea

- Signals have noise so estimate is uncertain
 Model uncertainty as a Gaussian
- So our belief model is

- x - mean, P - covariance

Model Part

- We can update the mean by using a model of the system f(x)=Ax+b
- How do we update covariances?
 Recall Var(Ax+b)=A' Var(x) A
- Using these we can predict where the target will be, and with what confidence

Observation Part

- Define z: observation
- We want P(x'|x,z)
- It's Gaussian, so this is easy

Example from Welch et al.

Questions?