
CMRoboBits (15-491) Fall 2008 – Homework 3

Part 1 Due Wednesday, October 8th 2007 at the beginning of lab
(12:30pm)

Part 2 Due Wednesday, October 15th 2007 at the beginning of lab
(12:30pm)

Path Planning: Overview
In this homework you will implement a grid-based path planning algorithm in C# to
navigate a maze with a scribbler robot. The initial configuration of the maze will be
unknown and your robot will have to use the infrared sensor to detect walls and
then re-plan its route as it goes along. Once it reaches its goal, it should plan a
path and drive back to the start using the map it has acquired along the
way.

The following Domain Information is provided:

• Your robot will operate within a 4x4 grid domain. There will be outer walls
enclosing the entire maze (see drawings further below).

• When starting, your robot will be placed at cell (0,0) facing North (that is,
facing towards cell 0,1).

• The goal will be at cell (3,3).

• The size of one grid-cell is about 29in x 29in (the size of the cardboard pieces
at the REL and the distance between the green tape)

• There exists a path from the Start to the Goal.

• Some cells in the grid might be unreachable.

• Your only possible actions in terms of planning are moving North, South,
West, East (you should not move diagonally). In terms of the robot’s
actuation this will result in either turning in 90 degree increments or moving
forward one grid-cell.

Page 1 of 4

• There will be some walls in your way. Walls are always placed on the edge
between two grid-cells. Your robot will need to detect these walls using its
front distance sensor.

Note: During the demo you will be allowed to manually re-center the robot
within the grid cell, and re-orient to the closest 90 degree angle after each
move. This should take care of the dead-reckoning issue. You should
probably use a dialog box to indicate program resumption to the
computer.

Part 1: Map Acquisition
For the first part of this lab you should:

1. Learn about making C# activities through tutorial 4

2. Define a grid representation of the problem within the C#

3. Have your scribbler dynamically build the map.

Part 2: Path Planner
Your basic algorithm outline should look like this:

1. In VPL: Check front distance sensor which will return either true or false

2. In your C# service: Check whether you have reached the goal: if your current
robot’s location is (3,3) then reverse the problem, setting field (0,0) to be the
new goal.

3. In your C# service: update your internal map structure using the distance
sensor result

Page 2 of 4

Goal

(0,0)

(0,3) (3,3)

(3,0)

Goal

(0,0)

(0,3) (3,3)

(3,0)

Your initial domain
knowledge.

One possible maze
configuration.

4. In your C# service: run your grid-based path planning algorithm (preferably
A-Star, or pure Breadth First search)

5. In your C# service: if your plan says to move in the direction you are
currently oriented, return a “move forward one grid-cell” to VPL. If your plan
says to move into a direction you are currently not oriented, return a “rotate
left 90 degrees” or “rotate right 90 degrees” to VPL. Update your internal
state in C# accordingly.

6. In VPL: execute the move (either turn or move forward)

7. In VPL: wait for “Ok” signal from user. You should use a dialog for this.
Additionally, it is a good idea to also display your current internal state (which
grid-cell and orientation) that your C# service returned. This allows you to
manually re-align your robot to the center of the grid-cell and to re-orient it in
case it went a bit sideways due to dead-reckoning. Once re-aligned, the user
can hit “ok” and you go back to step 1.

8. You should print out the pairs of cells that have walls in between them, as
well as the final path that you generated.

Inside your C# code you should keep track of your domain. You should have some
sort of data-structure/array that models the cells and walls in your world. You should
furthermore keep track of your current cell and orientation (NSWE), as well as the
goal.

Path Planning Algorithms
You can feel free to choose whichever grid-based path planning algorithm you
prefer. We recommend however that you use A-Star because it’s both fast and
optimal (assuming you use a simple goal-heuristic, such as Euclidean distance).
Alternatively, simple Breadth-First search is also a good choice because it’s also
guaranteed to be optimal.

C# Service and VPL
In order to create a C# service, it’s best to start out with a simple VPL activity
where you carefully define your function input and output and create a simple
connection between the two (e.g. a calculate box connecting the input and output
of your activity). Once you are absolutely sure that your function definition is
complete you should hit “Build->Compile as a Service” from the Menu. This will
generate C# code for your activity which you can then edit and compile to be used
as a VPL service. Important: Note that when you hit Compile as a Service from the
VPL menu, it will completely rewrite the C# code, so you should only do it once to
create your code-skeleton. Once you start writing C# code you should no longer use
this function, otherwise you will lose any changes you have done to the C# you
generated previously.

Page 3 of 4

Hints
- The only Scribbler service you should use is the one called “ScribblerBase”.

The IRLeft and IRRight values in the Replace function will give you the
Boolean IR sensor readings.

- You are allowed to reset the Scribbler to the center of the current square
when you find a wall. As described in step 7 in part 2, you should have a
dialog to wait for you to reset the robot.

Submission
Your entire homework should be submitted by copying it into the “dropbox/lab03”
folder on your personal AFS space before the due time. Make sure to submit
your C# code as well!

Write-Up
Please also submit a write-up for this lab (one write-up per group is fine). In it,
describe what internal data-structures you used in your C# code and which path
planning algorithm you implemented.

Page 4 of 4

	CMRoboBits (15-491) Fall 2008 – Homework 3
	Part 1 Due Wednesday, October 8th 2007 at the beginning of lab (12:30pm)
	Part 2 Due Wednesday, October 15th 2007 at the beginning of lab (12:30pm)

	Path Planning: Overview
	Part 1: Map Acquisition
	Part 2: Path Planner
	Path Planning Algorithms
	C# Service and VPL
	Hints
	Submission
	Write-Up

