
Page 1 of 3

CMRoboBits (15-491) Fall 2007 – Homework 6

Due Wednesday, November 7th 2007 at the beginning of lab (12:30pm)

Introduction “Robotic Tag”
In this homework you are to implement the game of “tag” using the Scribbler. You will use the vision

system for navigation, similar to the previous homework.

Domain Description
This homework is designed to be competitive. Each team will control one robot and there will be up to

three teams (three robots) on the field playing a game of tag. Each robot will be assigned a unique

pattern, so you can easily identify and control the particular robot assigned to your team.

The domain is a simple robotic version of the game of tag (also known as “it”, or “catch”): one robot is

designated the "tagger" which has the goal to "tag" (meaning touch, or in our case drive within a certain

distance) one of the other robots which we will call the "taggees". The taggee’s role is to run away and

avoid being tagged by the tagger respectively. Once a tag occurs, the roles switch and the taggee which

was touched becomes the tagger, while the former tagger becomes a taggee.

Scoring: We count positive scores for successfully tagging another robot, as well as negative scores for

being tagged.

Important: your program should also be able to run no matter whether there are two or three teams on

the field. This is mainly to allow testing in a less cluttered environment and to keep running if one of the

three teams fails.

Special Implementation Requirements for “tagging” a robot
Generally, a “tag” occurs when the tagger manages to come within a certain distance of a taggee.

However, since there is noise in your sensory environment and since different teams might query the

vision system at slightly different points in time, we need to ensure that both the tagger and taggee-

teams agree on when a "tag" happened. The way to implement this is by using different distance

thresholds for the tagger and taggee respectively:

When running the taggee (the robot being chased):

your robot should come to a complete stop once the tagger comes closer than 105 pixels in Euclidean

distance, measured between the two centers of the robots, or more formally if:

 sqrt((tagger_x - taggee_x)^2 + (tagger_y - taggee_y)^2) < 105.

It should then come to complete stop and wait for a signal (dialog box) to confirm to switch to tagger-

mode, or whether to resume its old role as a taggee (in case of a false positive).

Page 2 of 3

When running the tagger (the robot chasing the other robots):

Your tagger should continue chasing a taggee until it comes closer than 75 pixels in Euclidean distance.

 It should then come to a complete stop and wait for a signal (dialog box) to confirm switching into

taggee-mode, or whether to resume being the tagger (in case of a false positive).

Note, that having two different distance thresholds for the two behaviors should ensure that the taggee

will stop once being tagged, and the tagger will continue chasing him a little bit further until it is even

closer, thus ensuring that both teams should note tag events. It should go without saying that it is

important that you adhere to the above rules to ensure a fair game of tag. Obviously, if the tagger will

stop, this means that the taggee should definitely have stopped already due to its wider tagging

threshold. In order for this to work, you will need to query the vision system frequently enough, in other

words, keep your robot’s step-size small enough, or run the vision queries concurrently using timers and

variables, rather than a single closed loop. Also, please have your robot stay within the constraints of the

visible region (don’t drive of the field to avoid being tagged).

Strategy ideas

Tagger Strategy Considerations

You might want to come up with a good heuristic on which robot to chase. This could be based on e.g.

the shortest distance to the target. It is however important to avoid oscillations. You might want to

consider a finite state machine approach where you stick with a robot for given amount of time. Or you

might want to consider using hysteresis to switch your target only if the new target is significantly closer

than the previous one.

Taggee Strategy Considerations

Try to be creative with your avoidance strategy. You might want to consider sampling points in space

and evaluating them based on their distance to the tagger and/or other taggees.

You can also try more elaborate strategies (such as hiding behind the other taggee). If you use multiple

behaviors, you might again want to combine them in a state-machine.

Vision Patterns
The robots (and thus the teams) on the field will be identified by their center blob which will be either

“blue”, “orange”, or “green”. To obtain your orientation, a pink dot is placed at the top of your robot.

Note the new color IDs when querying the vision service:

4 = blue
5 = orange

6 = pink
7 = green

Page 3 of 3

Please only use these color-IDs since they are well-calibrated and well-separated in the color-space. Any
other colors (yellow, white, red, etc…) are no long er clearly calibrated and you should refrain from
using them for this homework and your project.

The following image demonstrates the new robot-patterns:

Flow of your program:
You should be able to run any of the three robot colors (and track the other two). Your program should

allow an easy setup of which robot to control and whether this robot should initially carry the role of the

tagger or taggee. Please use dialog boxes to allow changing these settings at runtime. Also, make sure

to use dialogs when switching roles as mentioned previously.

