
Page 1 of 4

CMRoboBits (15-491) Fall 2007

Homework 1 – Due Wednesday, September 12th 2007 at 11:59pm

http://www.andrew.cmu.edu/course/15-491/

Introduction

In this homework you will model and control the differential drive of a Scribbler Robot.

Submission

Your entire homework should be submitted by copying it into the “dropbox/lab01” folder on your

personal AFS space (located in /afs/andrew.cmu.edu/course/15/491/students) before the due time.

Please read the website for more information about how to access your AFS dropbox.

Please submit a write-up (.pdf or .ps) containing your answers to the non-code parts such as your graphs

and formulas (place it into the same dropbox/lab01 directory).

Part 1. Calibrate your robot's turning radius (50pts).

The Courseware Lab Tutorial 2 (“Advanced Motion”) makes use of the "TurningRadiusToWheelPowers"

service. The TurningRadius input argument is of type double, however it is not entirely clear how this

translates to an actual turning radius of your particular physical robot. In this part of the homework you

will calibrate a Scribbler Robot to allow the conversion of a real-world distance value (in cm) to a

“TurningRadius” value of type double.

a) Graphing your Turning Radius (20 pts)

Create a 2D scatter-plot of how TurningRadius corresponds to the actual turning radius of your

particular robot measured in centimeters. Important: Please represent the input argument

“TurningRadius” on the vertical axis, and your measured radius (in cm) on the horizontal axis (while this

might seem counter-intuitive at first, it will make sense later on because you are really interested in the

inverse of this relationship).

A measuring tape will be provided at the lab. Hint: one possible way to measure the radius is to start the

robot perpendicular to a line and have it run a 180 degree turn. Then measure the distance between the

starting location and the location where it crossed the line again. This should give you a simple

approximation of the turning-diameter (which is twice the radius).

Make sure to have at least 5 data-points in your graph (preferably more), including turning-radii of 0.0,

0.25, 0.5, 1.0, 1.5 (possibly larger, depending how big the turning radius will become)

It is important that you perform this experiment with an actual robot (not in the simulator).

Please include this graph in your write-up. Since the programming component of this question is trivial

and fully explained in the first part of the courseware tutorial 2, you are not required to submit any code

for this particular question.

Page 2 of 4

b) Provide a simple function approximating this relationship (20 pts)

Now that you have created your graph, you should be able to find a simple function that you can use to

map any particular target radius from real-world coordinates (centimeters) to the “TurningRadius” of

type double. Please supply this function f(x) in your write-up. In this case, the function’s argument x is

the desired radius in cm, and the function’s result should be the “TurningRadius” value. Try to keep your

function fairly simple (please don’t overfit it using some crazy function, such as a higher-order

polynomial… your data will naturally be noisy, and we are looking for a simple relationship, possibly of a

linear, cubic, or logarithmic nature). It is ok to use a curve-fitting tool (e.g. Excel) to do this.

c) Plot the above function in your existing graph (10 pts)

To see whether your formula really matches your data, please plot it as a line through your existing

graph (that is, generate a lot of points for various possible inputs x). Make sure to cover an input range

between at least 0cm and 150cm for this plot. Note that for this question, we only want you to plot the

function you found in b) onto the existing scatter plot you made in a). You do not need to re-run the

robot or re-measure anything.

Part 2. Variable degree, variable speed, real-world radius turn control (50pts)

In this part of the homework you will create a VPL program that takes the following three parameters:

Drive Speed (type double, range 0.0-1.0): the speed of the robot.

Turn Radius (type double, in centimeters): the turning radius of the robot.

Turn Range (type double, in degrees): how far to turn.

When starting the robot, your program should ask the user to supply these three values (e.g. using a

SimpleDialog). Once all values have been entered, the robot should perform the turn with the properties

specified and then come to a complete stop, such as depicted below

Your program should contain and make use of the “TurningRadiusToWheelPowers” service.

radius

radius

range

Stop position

Start position

Page 3 of 4

Since we would like the turn radius data to be entered as cm, you will need to use the formula that you

came up with in question 1b) to convert this data to a TurnRadius of type double which

“TurningRadiusToWheelPowers” will accept.

One limitation of the TurningRadiusToWheelPowers service (as shown in the first section of courseware

tutorial two) is that the robot will always drive at its maximum speed. The “Drive Speed” parameter in

this question should allow the user to specify any lower speeds as well. So basically it acts as a multiplier

to the output of TurningRadiusToWheelPowers. E.g. a “Drive Speed” of 0.5 should drive at half the

speed of the default turn speed. You do NOT need to worry about real-world velocities (e.g. cm/s) for

this particular variable. It is fine to let it be a simple multiplier in the range of 0 to 1.

The Turn Range is the trickiest part to implement. Since you don’t receive any motor-feedback from the

robot, you will need to use a timer to keep track of how long to drive before turning the motors off. You

will need to manually calibrate this to figure out how many seconds in time correspond to how many

degrees of turn. Note that this time depends on the speed and the radius! However, since you do know

the speed and the time, you should be able to come up with a very small bit of math to figure out how

long to run the motors for (think about computing the distance that the robot is driving…think

circumference of a circle….remember that velocity=distance/time).

This programming assignment has a couple slightly tricky parts to it. We strongly recommend that you

perform the Courseware Lab 2 tutorial first (at least the first half of it which explains how to use the

timer). Besides the timer, you will also need to make use of join and merge.

Below is a screenshot of what you should start working with (in particular the three inputs).

Page 4 of 4

Important: Please try to comment your VPL diagram by using comment boxes, or the inherent comment

property that most services carry.

Also, please add anything you would like us to know about your project to your write-up.

Please submit your entire project (the entire folder, not only the mvpl file) by placing it in your

dropbox/lab01/ folder (see submission instructions at the beginning of this assignment).

Good Luck!

