1. Multiple Choice: circle the correct answer (43 pts)

For (a)-(c), assume the base-case $T(x) = 1$ for $x \leq 3$.

(a) The recurrence $T(n) = T(n/3) + T(n/2) + n$ solves to:

$\Theta(1) \quad \Theta(\log n) \quad \Theta(n^{\log_2 2}) \quad \Theta(n) \quad \Theta(n \log n)$

(b) The recurrence $T(n) = T(2n/3) + 1$ solves to:

$\Theta(1) \quad \Theta(\log n) \quad \Theta(n^{\log_2 2}) \quad \Theta(n) \quad \Theta(n \log n)$

(c) The recurrence $T(n) = 2T(n/3) + 1$ solves to:

$\Theta(1) \quad \Theta(\log n) \quad \Theta(n^{\log_2 2}) \quad \Theta(n) \quad \Theta(n \log n)$

(d) Consider the following sorting algorithm: first insert all n elements into a B-tree with $t = 2$ (so this is a 2-3-4 tree). Then do an inorder traversal of the tree, to print everything out. This takes time:

$\Theta(n) \quad \Theta(n \log n) \quad \Theta(n^2) \quad \Theta(n^2 \log n)$

(e) Suppose we have a sorting algorithm that in addition to regular comparisons, is also allowed super-comparisons: a super-comparison takes in three elements and outputs those elements in order from smallest to largest. So, unlike a regular comparison that only has two possible outcomes, a super-comparison has 3! possible outcomes. Which of the following is a correct lower bound on the number of super-comparisons needed to sort an array of size n?

$\log_2(n!) \quad \log_3(n!) \quad \log_6(n!) \quad n \log_2(n) \quad n^2$
(f) Al Gore-ithm (distant cousin of the former VP) gives you a data structure for a certain task with amortized cost $O(1)$ per operation. What does this amortized cost bound imply about a sequence of n operations? (Circle one).

(a) The total cost is $O(1)$ and each operation costs $O(1)$.
(b) The total cost is $O(n)$ and each operation costs $O(1)$.
(c) The total cost is $O(n)$ but a single operation might cost as much as $\Omega(n)$.
(d) The total cost is $O(n)$ but a single operation might cost as much as $\Omega(\log n)$.

(g) The Hamming distance between two n-bit vectors A and B is the number of locations i such that $A[i] \neq B[i]$. What is the expected Hamming distance between two random n-bit vectors (each location in each vector is determined by a fair coin flip)?

$$1 \quad n/4 \quad n/2 \quad 3n/4 \quad n$$

(h) Consider a random permutation of the numbers $1 \ldots n$. A number in this permutation is called a Biggie if it’s greater than all the numbers to its left. (Note that the number that ends up in the first position is definitely a Biggie.)

- What’s the probability that a number in position i is a Biggie? (The positions are numbered from left to right, starting from 1.)

$$1 \quad 1/2 \quad 1/\sqrt{i} \quad 1/i \quad 1/\sqrt{n} \quad 1/n$$

- Building on your answer above, what’s the expected number of Biggies in the whole array?

$$\Theta(1) \quad \Theta(\log n) \quad \Theta(\sqrt{n}) \quad \Theta(n)$$
2. Truth or counterexample (20 pts). For each statement below, indicate whether it is true or false. If true, give a short proof. If false, give a counterexample.

(a) The order in which keys are inserted into a B-tree does not affect the final tree that is produced. That is, given a set of (distinct) keys, all insertion orders produce the same B-tree.

(b) Given a graph G, running Depth-First-Search, where you traverse edges in order of length, finds the MST. Specifically, the proposed algorithm is the following (starting from some arbitrary node v):

Min-DFS-tree(v):
 Mark v as visited.
 For each edge (v,w) in order from shortest to longest,
 If w is not marked,
 Put (v,w) into the tree
 Recursively run Min-DFS-tree(w)
(c) The optimal binary search tree for a sequence of lookup requests must have the most frequently-requested element at the root. (Recall from Homework 3 that the optimal binary search tree for a sequence of requests is the tree of least total cost.)
3. **Dynamic Programming (21 pts).** Given two sequences \(X \) and \(Y \) let \(C(X, Y) \) denote the number of times that \(X \) appears as subsequence of \(Y \). By *subsequence* we mean that the characters in \(X \) appear left-to-right in \(Y \), but they do not have to be contiguous. For instance, the sequence AB appears 4 times as a subsequence of ADABCB. Let \(X_i \) denote the first \(i \) characters of the string \(X \) and let \(X[i] \) denote the \(i \)th character (similarly for \(Y \)). Let \(m \) denote the length of \(X \) and let \(n \) denote the length of \(Y \).

(a) Write a recurrence for \(C(X_i, Y_j) \).

\[
C(X_i, Y_j) = \begin{cases}
\text{if } X[i] \neq Y[j] \\
\text{if } X[i] = Y[j]
\end{cases}
\]

Now set up the base cases so that your recurrence is correct.

\[
C(X_0, Y_j) = \text{ } \\
C(X_i, Y_0) = \text{ if } i > 0
\]

(b) Let \(C[i, j] \) be a 2-dimensional \(m + 1 \) by \(n + 1 \) matrix initialized to all \(-1\)s. Describe briefly, (or write pseudocode) how to convert your solution to part (a) into a dynamic programming algorithm to compute \(C(X, Y) \). You may use either a bottom-up or top-down approach.

(c) What is the running time of your algorithm as a function of \(m \) and \(n \) (use \(O \) notation)
4. Hashing (16 pts) Let H be a set of k hash functions $\{h_1, \ldots, h_k\}$ mapping a universe U of size 2^n into the range $\{0, 1\}$. So, $M = 2$.

(a) Prove that if $k \leq n - 1$ then there must exist x and y in U ($x \neq y$) that collide under every hash function in H.

(b) Prove that if $k < 2(n - 1)$ then H cannot be a universal hash family. For instance, if U has size 8, then H needs to contain at least 4 functions. Hint: use part (a).