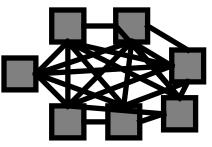
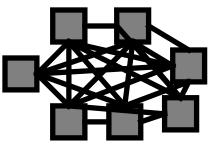
15-441 Computer Networking Lecture 5 Data link Layer – Access Control

Based on slides by Peter Steenkiste Copyright ©, Carnegie Mellon 2007-12

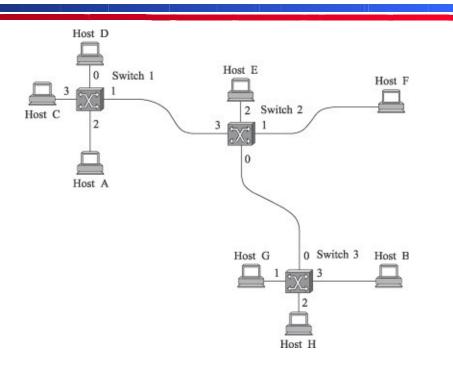

Datalink Functions

- Framing: encapsulating a network layer datagram into a bit stream.
 - » Add header, mark and detect frame boundaries, ...
- Error control: error detection and correction to deal with bit errors.
 - » May also include other reliability support, e.g. retransmission
- Flow control: avoid sender overrunning receiver.
- Media access: controlling which frame should be sent over the link next.
 - » Easy for point-to-point links
 - » Harder for multi-access links: who gets to send?

• ... But what if we want more nodes?



Wires for everybody!

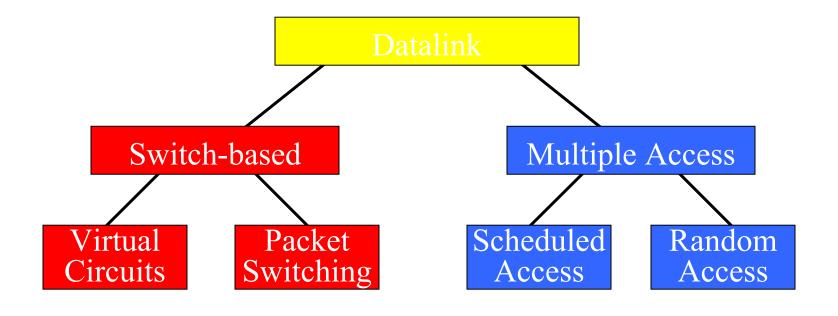

• ... But what if we want more nodes?

Wires for everybody!

Datalink Architectures

Point-Point with switches

≓ Media access control.

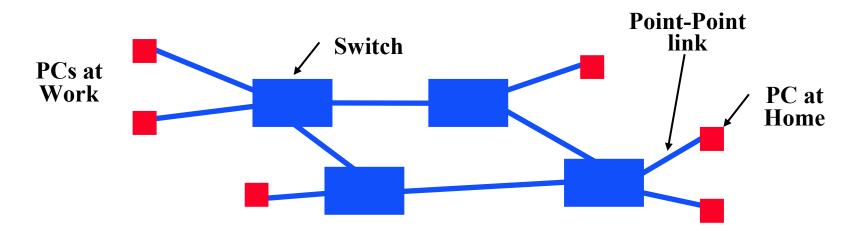

Media Access Control

- How do we transfer packets between two hosts connected to the same network?
- Switches connected by point-to-point links -store-and-forward.
 - » Used in WAN, LAN, and for home connections
 - » Conceptually similar to "routing"
 - But at the datalink layer instead of the network layer

Multiple access networks -- contention based.

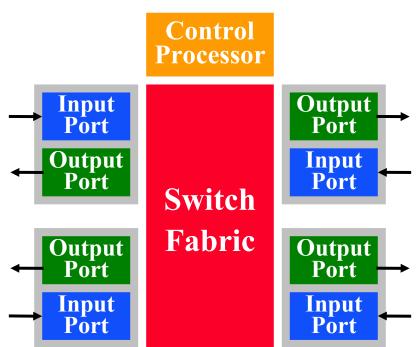
- » Multiple hosts are sharing the same transmission medium
- » Used in LANs and wireless
- » Need to control access to the medium

Datalink Classification



Switching

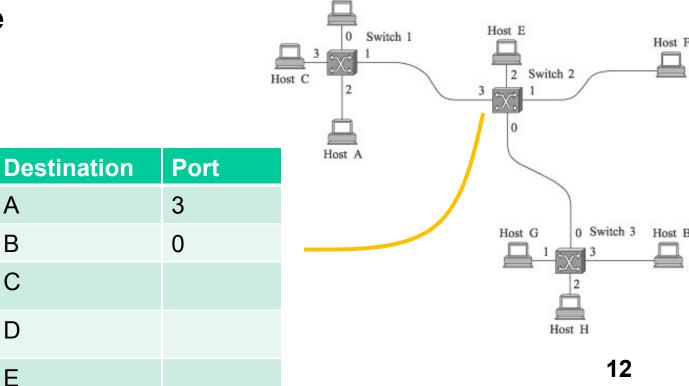
- Forward units of data based on address in header.
- Many data-link technologies use switching.
 - » Virtual circuits: Frame Relay, ATM, X.25, ..
 - » Packets: Ethernet, MPLS, ...
- = "Switching" also happens at the network layer.
 - » Layer 3: Internet protocol
 - » In this case, address is an IP address
 - » IP over SONET, IP over ATM, ...
 - » Otherwise, operation is very similar
- Switching is different from SONET mux/demux.
 - » SONET channels statically configured no addresses


A Switch-based Network

- Switches are connected by point-point links.
- Packets are forwarded hop-by-hop by the switches towards the destination.
 - » Forwarding is based on the address
- How does a switch work?
- How do nodes exchange packets over a link?
- How is the destination addressed?

Switch Architecture

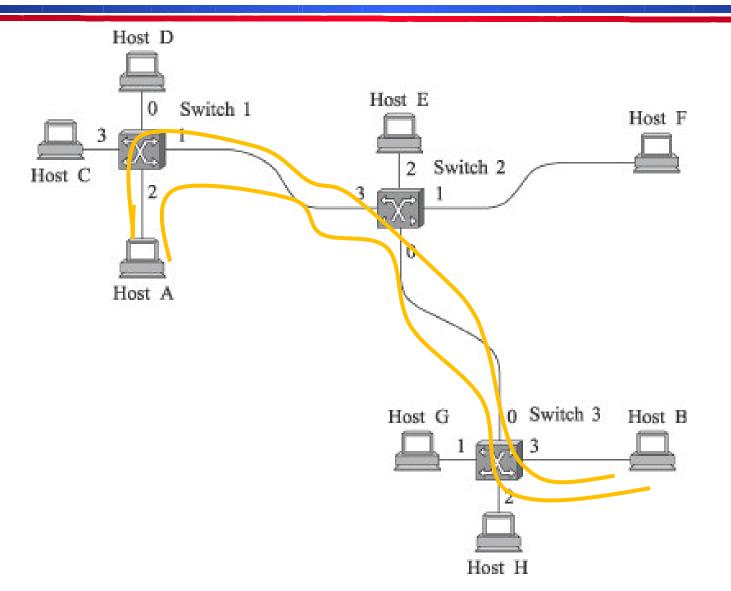
- Packets come in one interface, forwarded to output interface based on address.
 - » Same idea for bridges, switches, routers: address look up differs
- Control processor manages the switch and executes higher level protocols.
 - » E.g. routing, management, ...
- The switch fabric directs the traffic to the right output port.
- The input and output ports deal with transmission and reception of packets.

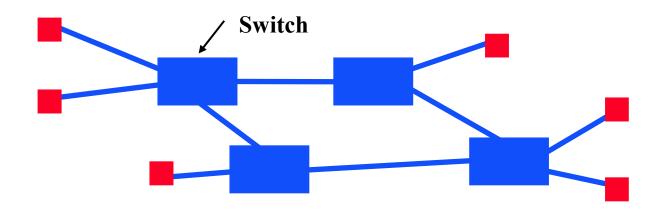

Connections or Not?

Two basic approaches to packet forwarding
 Connectionless
 (virtual) Circuit switched

When would you use?

Connectionless

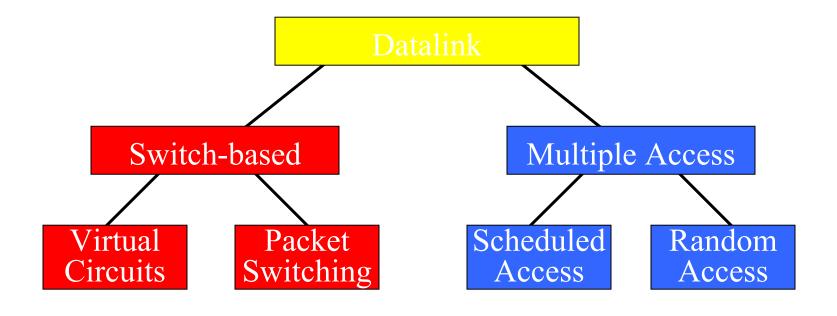

- Host can send anytime anywhere
- No idea if resources are available to get to dest
- Forwarding is independent for each packet
- ≓ No setup time
- ≓ Fault tolerant


Virtual Circuit Switching

- Two stage process
 - »Setup connection (create VCIs)
 - »Send packets
- RTT introduced before any data is sent
- Per packet overhead can be smaller (VCI << adr)</p>
- Switch failures are hard to deal with
- Reserves resources for connection

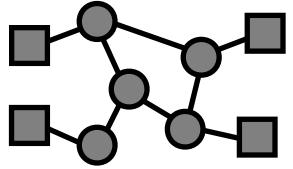
Setup, assign VCIs

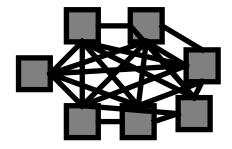
Packet Forwarding: Address Lookup



Address from header.

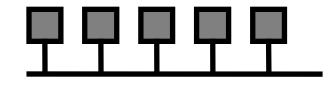
- » Absolute address (e.g. Ethernet)
- » (IP address for routers)
- » (VC identifier, e.g. ATM))
- Next hop: output port for packet.
- ≓ Info: priority, VC id, ..
- Table is filled in by protocol.


Datalink Classification



Problem: Sharing a Wire

... But what if we want more hosts?



Wires for everybody!

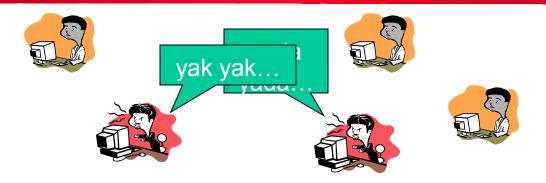
Switches

Expensive! How can we share a wire?

Listen and Talk

Natural scheme – listen before you talk…

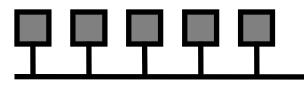
»Works well in practice


Listen and Talk

Natural scheme – listen before you talk…

»Works well in practice

Listen and Talk


Natural scheme – listen before you talk…

»Works well in practice

But sometimes this breaks down

»Why? How do we fix/prevent this?

- Need to put an address on the packet
- What should it look like?
- How do you determine your own address?
- How do you know what address you want to send it to?

Outline

≓Aloha

= Ethernet MAC

≓Collisions

= Ethernet Frames

Random Access Protocols

When node has packet to send

- » Transmit at full channel data rate R
- » No a priori coordination among nodes

= Two or more transmitting nodes \rightarrow "collision"

- **Random access MAC protocol specifies:**
 - » How to detect collisions
 - » How to recover from collisions (e.g., via delayed retransmissions)

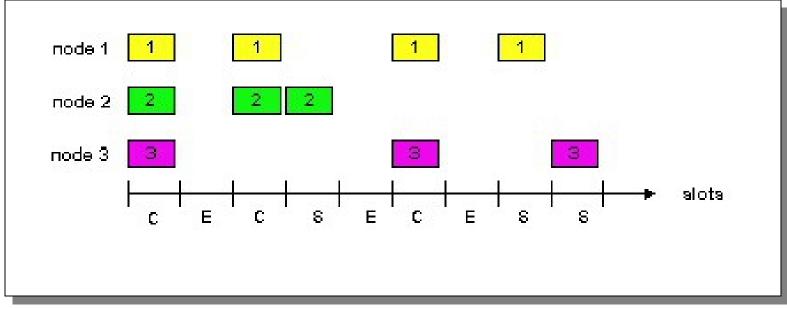
Examples of random access MAC protocols:

- » Slotted ALOHA and ALOHA
- » CSMA and CSMA/CD

Aloha – Basic Technique

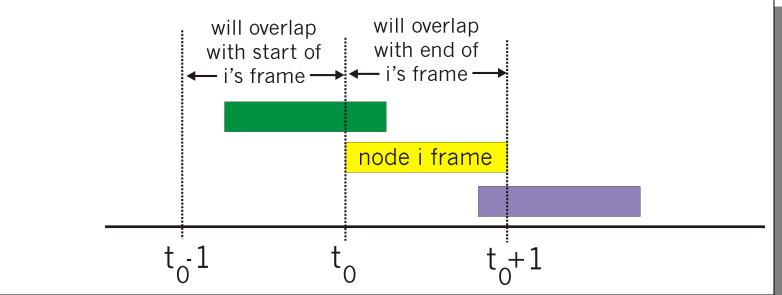
First random MAC developed

» For radio-based communication in Hawaii (1970)


≓Basic idea:

- » When you are ready, transmit
- » Receivers send ACK for data
- » Detect collisions by timing out for ACK
- » Recover from collision by trying after random delay
 - Too short \rightarrow large number of collisions
 - Too long \rightarrow underutilization

Slotted Aloha


Time is divided into equal size slots

- » Equal to packet transmission time
- Node (w/ packet) transmits at beginning of next slot
- If collision: retransmit pkt in future slots with probability p, until successful

Pure (Unslotted) ALOHA

- Unslotted Aloha: simpler, no synchronization
- Pkt needs transmission:
 - » Send without awaiting for beginning of slot
- Collision probability increases:
 - » Pkt sent at t_0 collide with other pkts sent in $[t_0-1, t_0+1]$

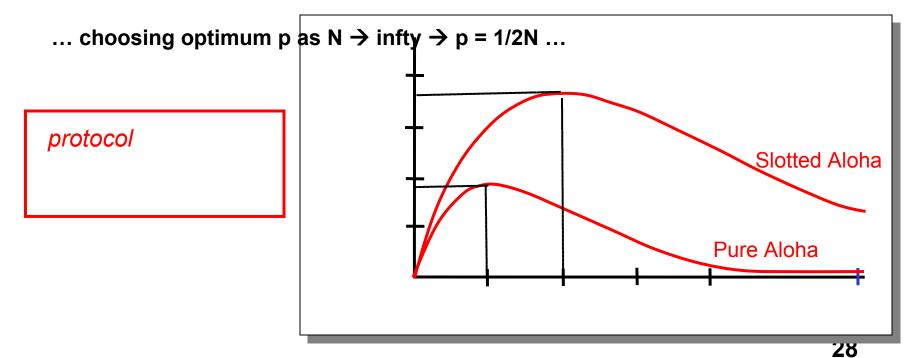
Slotted Aloha Efficiency

- **Q:** What is max fraction slots successful?
- A: Suppose N stations have packets to send
 - »Each transmits in slot with probability p
 - »Prob. successful transmission S is:
 - by single node: $S = p (1-p)^{(N-1)}$

by any of N nodes

S = Prob (only one transmits) = $N p (1-p)^{(N-1)}$

... choosing optimum p as N -> infty ...


... p = 1/N

At best:

Pure Aloha (cont.)

P(success by given node) = P(node transmits) X P(no other node transmits in $[p_0-1,p_0]$ X P(no other node transmits in $[p_0-1,p_0]$

P(success by any of N nodes) = N p X $(1-p)^{(N-1)} X (1-p)^{(N-1)} = 1/(2e) = .18$

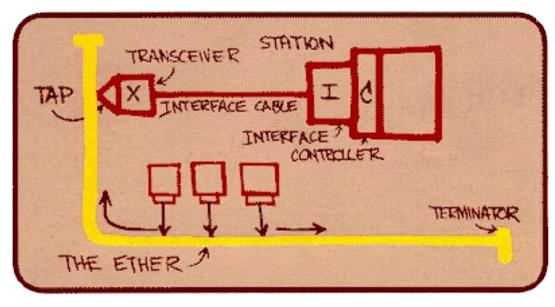
Simple Analysis of Efficiency

- Key assumptions
 - »All packets are same, small size
 - Packet size = size of contention slot
 - »All nodes always have pkt to send
 - »p is chosen carefully to be related to N
 - p is actually chosen by exponential backoff
 - »Takes full slot to detect collision (I.e. no "fast collision detection")

Ethernet MAC

Collisions

Ethernet Frames

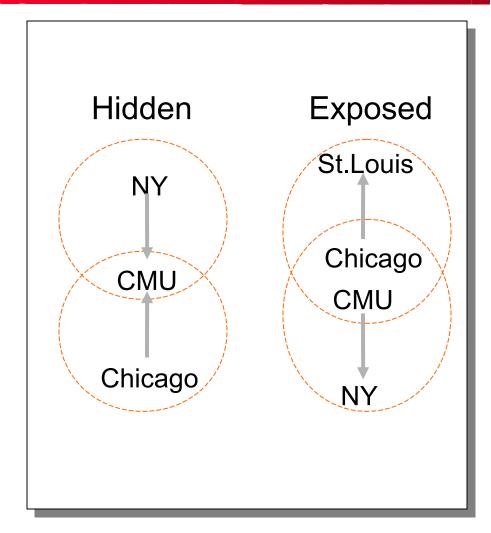

Ethernet

First practical local area network, built at Xerox PARC in 70's

"Dominant" LAN technology:

» Cheap

» Kept up with speed race: 10, 100, 1000 Mbps


Ethernet MAC – Carrier Sense

≓Basic idea:

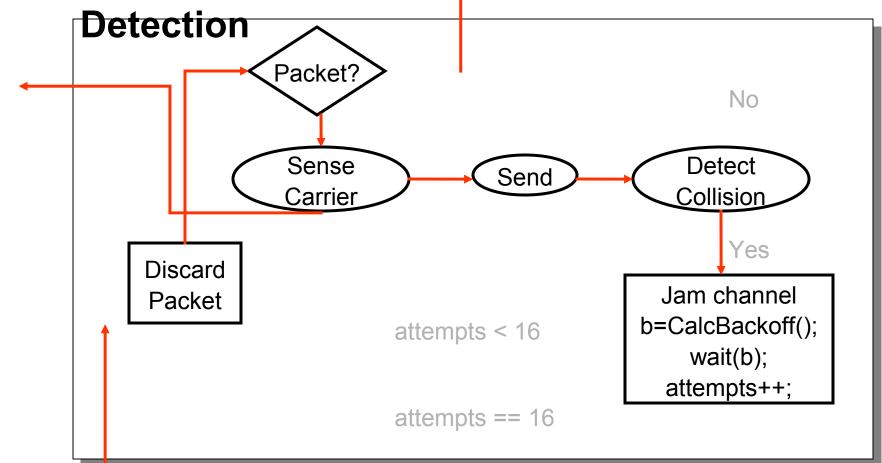
- » Listen to wire before transmission
- » Avoid collision with active transmission

₩hy didn't ALOHA have this?

- » In wireless, relevant contention at the receiver, not sender
 - Hidden terminal
 - Exposed terminal

Ethernet MAC – Collision Detection

But: ALOHA has collision detection also?


» That was very slow and inefficient

<mark>≓Basic idea</mark>:

- » Listen while transmitting
- » If you notice interference \rightarrow assume collision
- Why didn't ALOHA have this?
 - » Very difficult for radios to listen and transmit
 - » Signal strength is reduced by distance for radio
 - Much easier to hear "local, powerful" radio station than one in NY
 - You may not notice any "interference"

Ethernet MAC (CSMA/CD)

Carrier Sense Multiple Access/Collision

Ethernet CSMA/CD: Making it word

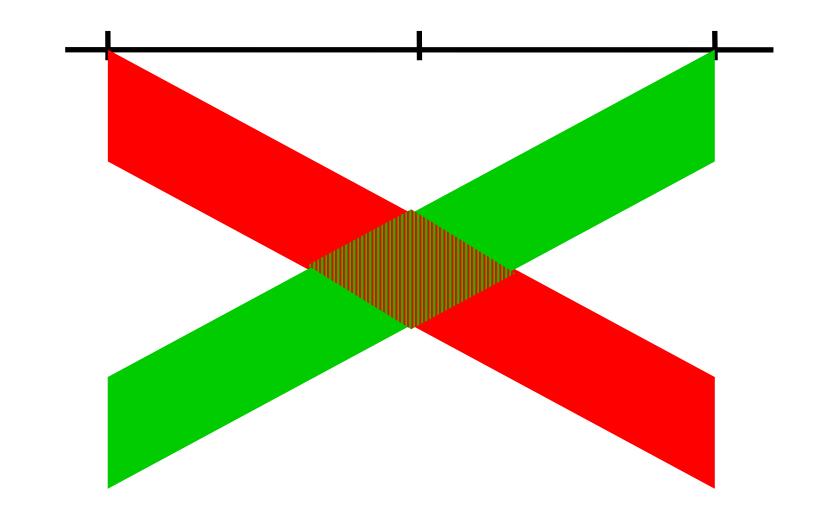
Jam Signal: make sure all other transmitters are aware of collision; 48 bits;

Exponential Backoff:

- ≓If deterministic delay after collision, collision will occur again in lockstep
- Why not random delay with fixed mean?
 - » Few senders \rightarrow needless waiting
 - » Too many senders \rightarrow too many collisions
- Goal: adapt retransmission attempts to estimated current load
 - » heavy load: random wait will be longer

Ethernet Backoff Calculation

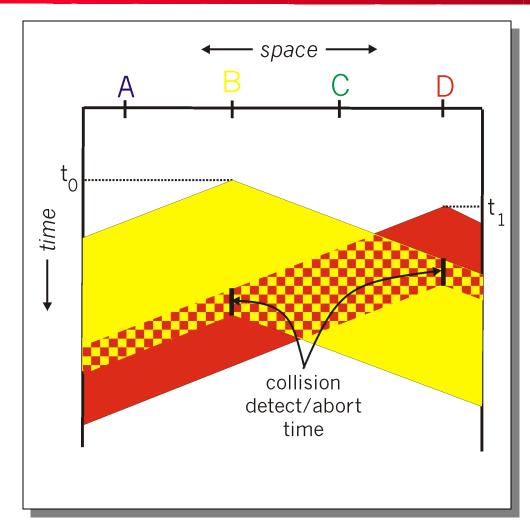
- ≓ Exponentially increasing random delay » Infer senders from # of collisions » More senders → increase wait time
- First collision: choose K from {0,1}; delay is K x 512 bit transmission times
- ≓ After second collision: choose K from {0,1,2,3}...
- After ten or more collisions, choose K from {0,1,2,3,4,...,1023}


≓Aloha

= Ethernet MAC

Collisions

= Ethernet Frames


Collisions

Minimum Packet Size

What if two people sent really small packets

» How do you find collision?

Ethernet Collision Detect

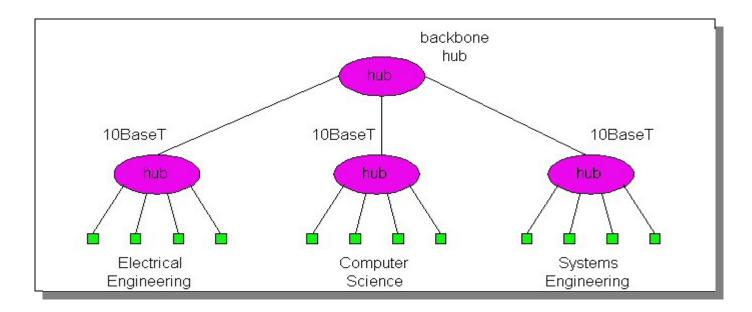
- Min packet length > 2x max prop delay
 - If A, B are at opposite sides of link, and B starts one link prop delay after A
- Jam network for 32-48 bits after collision, then stop sending
 - »Ensures that everyone notices collision

End to End Delay

c in cable = 60% * c in vacuum = 1.8 x 10^8
m/s

≓Modern 10Mb Ethernet

- » 2.5km, 10Mbps
- »~= 12.5us delay
- » +Introduced repeaters (max 5 segments)
- » Worst case 51.2us round trip time!
- ≓Slot time = 51.2us = 512bits in flight
 - » After this amount, sender is guaranteed sole access to link
 - » 51.2us = slot time for backoff


Packet Size

≓What about scaling? 3Mbit, 100Mbit, 1Gbit...

- » Original 3Mbit Ethernet did not have minimum packet size
 - Max length = 1Km and No repeaters
- » For higher speeds must make network smaller, minimum packet size larger or both
- What about a maximum packet size?
 - » Needed to prevent node from hogging the network
 - » 1500 bytes in Ethernet

10BaseT and 100BaseT

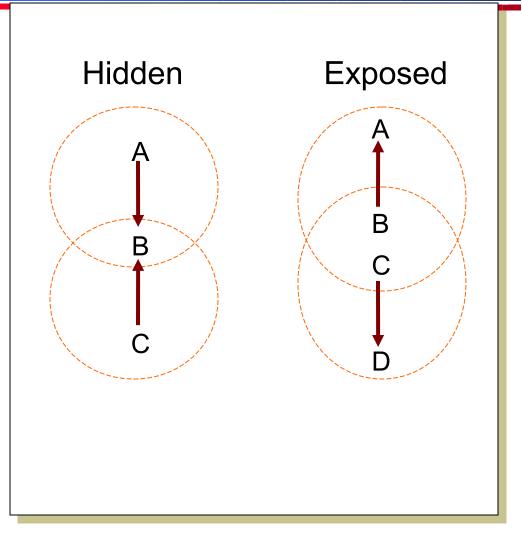
- = 10/100 Mbps rate; latter called "fast ethernet"
- T stands for Twisted Pair (wiring)
- Minimum packet size requirement
 - » Make network smaller → solution for 100BaseT

Gbit Ethernet

- Minimum packet size requirement
 - » Make network smaller?
 - 512bits @ 1Gbps = 512ns
 - 512ns * 1.8 * 10^8 = 92meters = too small !!
 - » Make min pkt size larger!
 - Gigabit Ethernet uses collision extension for small pkts and backward compatibility

Maximum packet size requirement

- » 1500 bytes is not really "hogging" the network
- » Defines "jumbo frames" (9000 bytes) for higher efficiency


Next: CSMA/CD Does Not Work

≓ Recall Aloha

- » Wireless precursor to Ethernet.
- ≓ Carrier sense problems
 - » Relevant contention at the receiver, not sender
 - » Hidden terminal
 - » Exposed terminal

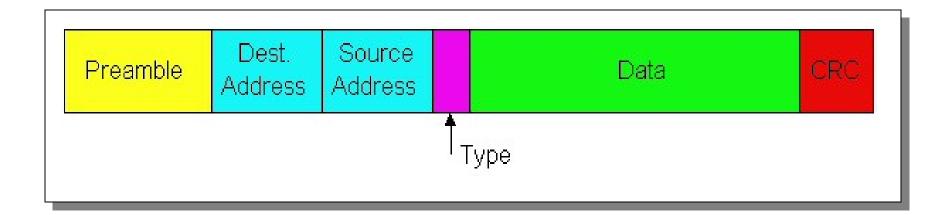
Collision detection problems

» Hard to build a radio that can transmit and receive at same time

RTS/CTS Approach

- Before sending data, send Ready-to-Send (RTS)
- Target responds with Clear-to-Send (CTS)
- Others who hear CTS defer transmission
 - » Packet length in RTS and CTS messages
 - » Why not defer on RTS alone?
- ≓If CTS is not heard, or RTS collides
 - » Retransmit RTS after binary exponential backoff
 - » (There are lots of cool details embedded in this last part that went into the design of 802.11 - if you're curious, look up the "MACAW" protocol).

Outline


≓Aloha

= Ethernet MAC

≓Collisions

Ethernet Frames

Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame

Ethernet Frame Structure (cont.)

≓ Preamble: 8 bytes

»101010...1011

»Used to synchronize receiver, sender clock rates

≓ CRC: 4 bytes

»Checked at receiver, if error is detected, the frame is simply dropped

Ethernet Frame Structure (cont.)

- ≓Each protocol layer needs to provide some hooks to upper layer protocols
 - » Demultiplexing: identify which upper layer protocol packet belongs to
 - » E.g., port numbers allow TCP/UDP to identify target application
 - » Ethernet uses Type field

≓Type: 2 bytes

» Indicates the higher layer protocol, mostly IP but others may be supported such as Novell IPX and AppleTalk) **Addressing Alternatives**

- » Addressing determines which packets are kept and which are packets are thrown away
- » Packets can be sent to:
 - Unicast one destination
 - Multicast group of nodes (e.g. "everyone playing Quake")
 - Broadcast everybody on wire

Dynamic addresses (e.g. Appletalk)

- » Pick an address at random
- » Broadcast "is anyone using address XX?"
- » If yes, repeat

#Static address (e.g. Ethernet)

Ethernet Frame Structure (cont.)

≓Addresses: 6 bytes

- » Each adapter is given a globally unique address at manufacturing time
 - Address space is allocated to manufacturers
 - # 24 bits identify manufacturer
 - = E.g., 0:0:15:* → 3com adapter
 - Frame is received by all adapters on a LAN and dropped if address does not match
- » Special addresses
 - Broadcast FF:FF:FF:FF:FF is "everybody"
 - Range of addresses allocated to multicast
 - Adapter maintains list of multicast groups node is interested in

Why Did Ethernet Win?

≓ Failure modes

- » Token rings network unusable
- » Ethernet node detached

Good performance in common case

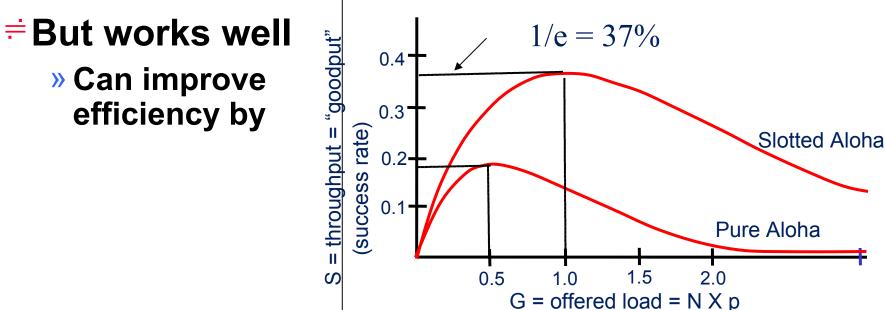
- » Deals well with bursty traffic
- » Usually used at low load
- $= Volume \rightarrow lower cost \rightarrow higher volume \dots$

≓ Adaptable

- » To higher bandwidths (vs. FDDI)
- » To switching (vs. ATM)
- Easy incremental deployment
- ≓ Cheap cabling, etc

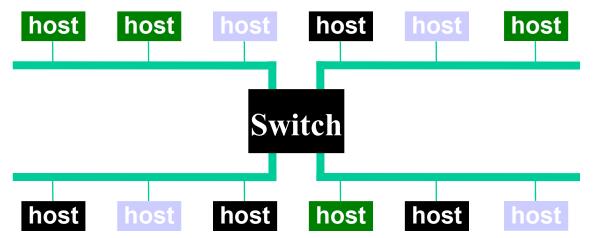
And .. It is Easy to Manage

You plug in the host and it basically works


- » No configuration at the datalink layer
- » Today: may need to deal with security
- Protocol is fully distributed

≓Broadcast-based.

- » In part explains the easy management
- » Some of the LAN protocols (e.g. ARP) rely on broadcast
 - Networking would be harder without ARP
- » Not having natural broadcast capabilities adds complexity to a LAN
 - Example: ATM


Ethernet Problems: Unstable at High Load

- Peak throughput worst with
 - » More hosts more collisions to identify single sender
 - » Smaller packet sizes more frequent arbitration
 - » Longer links collisions take longer to observe, more wasted bandwidth

Virtual LANs

- Single physical LAN infrastructure that carries multiple "virtual" LANs simultaneously.
- = Each virtual LAN has a LAN identifier in the packet.
 - » Switch keeps track of what nodes are on each segment and what their virtual LAN id is
- Can bridge and route appropriately.
- **=** Broadcast packets stay within the virtual LAN.
 - » Limits the collision domain for the packet

Summary

≓CSMA/CD → carrier sense multiple access with collision detection

- » Why do we need exponential backoff?
- » Why does collision happen?
- » Why do we need a minimum packet size?

– How does this scale with speed?

≓Ethernet

- » What is the purpose of different header fields?
- » What do Ethernet addresses look like?

₩hat are some alternatives to Ethernet design?