
Security

15-441

With slides from: Debabrata Dash, Nick Feamster,

Vyas Sekar, and others

15-411 Fall 2011 2011 Carnegie Mellon University 2

Our “Narrow” Focus

• Yes:

 Protecting network resources and limiting

connectivity (Part I)

 Creating a “secure channel” for communication

(Part II)

• No:

 Preventing software vulnerabilities & malware,

or “social engineering”.

15-411 Fall 2011 2011 Carnegie Mellon University 3

Flashback .. Internet design goals

1. Interconnection

2. Failure resilience

3. Multiple types of service

4. Variety of networks

5. Management of resources

6. Cost-effective

7. Low entry-cost

8. Accountability for resources

 Where is security?

15-411 Fall 2011 2011 Carnegie Mellon University 4

Why did they leave it out?

• Designed for connectivity

• Network designed with implicit trust

 No “bad” guys

• Can’t security be provided at the edge?

 Encryption, Authentication etc

 End-to-end arguments in system design

15-411 Fall 2011 2011 Carnegie Mellon University 5

Security Vulnerabilities

• At every layer in the protocol stack!

• Network-layer attacks

 IP-level vulnerabilities

 Routing attacks

• Transport-layer attacks

 TCP vulnerabilities

• Application-layer attacks

15-411 Fall 2011 2011 Carnegie Mellon University 6

IP-level vulnerabilities

• IP addresses are provided by the source

 Spoofing attacks

• Using IP address for authentication

 e.g., login with .rhosts

• Some “features” that have been exploited

 Fragmentation

 Broadcast for traffic amplification

15-411 Fall 2011 2011 Carnegie Mellon University 7

Security Flaws in IP

• The IP addresses are filled in by the originating host

 Address spoofing

• Using source address for authentication

 r-utilities (rlogin, rsh, rhosts etc..)

Internet

2.1.1.1 C

1.1.1.1 1.1.1.2 A B

1.1.1.3 S

•Can A claim it is B to

the server S?

•ARP Spoofing

•Can C claim it is B to

the server S?

•Source Routing

15-411 Fall 2011 2011 Carnegie Mellon University 8

ARP Spoofing

• Attacker uses ARP protocol to associate MAC

address of attacker with another host's IP address

• E.g. become the default gateway:

 Forward packets to real gateway (interception)

 Alter packets and forward (man-in-the-middle attack)

 Use non-existant MAC address or just drop packets

(denial of service attack)

• ARP Spoofing used in hotel & airport networks to

direct new hosts to register before getting

"connected"

15-411 Fall 2011 2011 Carnegie Mellon University 9

Source Routing

• ARP spoofing cannot redirect packets to
another network

• We have studied routing protocols: routers
do all the work, so if you spoof an IP source
address, replies go to the spoofed host

• An option in IP is to provide a route in the
packet: source routing.

• Equivalent to tunneling.

• Attack: spoof the host IP address and
specify a source route back to the attacker.

15-411 Fall 2011 2011 Carnegie Mellon University 10

Smurf Attack

Attacking System

Internet

Broadcast

Enabled

Network

Victim System

Ping request to a

broadcast address

with source = victim's

IP address

Ping request to

broadcast address

with source = victim's

IP address

Ping reply from

every host

Replies directed

to victim

15-411 Fall 2011 2011 Carnegie Mellon University 11

ICMP Attacks

• ICMP: Internet Control Message Protocol

• No authentication

• ICMP redirect message

• Oversized ICMP messages can crash hosts

• Destination unreachable
 Can cause the host to drop connection

• Many more…
 http://www.sans.org/rr/whitepapers/threats/477.php

15-411 Fall 2011 2011 Carnegie Mellon University 12

ICMP Redirect

• ICMP Redirect message: tell a host to use a

different gateway on the same network

(saves a hop for future packets)

Host A

"Good" Gateway
Attacker

Spoof an ICMP Redirect message from "Good"

Gateway to redirect traffic through Attacker TCP packets

15-411 Fall 2011 2011 Carnegie Mellon University 13

Routing attacks

• Divert traffic to malicious nodes
 Black-hole

 Eavesdropping

• How to implement routing attacks?
 Distance-Vector:

 Link-state:

• BGP vulnerabilities

15-411 Fall 2011 2011 Carnegie Mellon University 14

Routing attacks

• Divert traffic to malicious nodes
 Black-hole

 Eavesdropping

• How to implement routing attacks?
 Distance-Vector: Announce low-cost routes

 Link-state: Dropping links from topology

• BGP vulnerabilities
 Prefix-hijacking

 Path alteration

15-411 Fall 2011 2011 Carnegie Mellon University 15

TCP-level attacks

• SYN-Floods

 Implementations create state at servers before
connection is fully established

• Session hijack

 Pretend to be a trusted host

 Sequence number guessing

• Session resets

 Close a legitimate connection

15-411 Fall 2011 2011 Carnegie Mellon University 16

Session Hijack

Trusted (T)

Malicious (M)

Server

First send a legitimate

SYN to server

15-411 Fall 2011 2011 Carnegie Mellon University 17

Session Hijack

Trusted (T)

Malicious (M)

Server

Using ISN_S1 from earlier

connection guess ISN_S2!

15-411 Fall 2011 2011 Carnegie Mellon University 18

TCP Layer Attacks

• TCP SYN Flooding

 Exploit state allocated at server after initial SYN

packet

 Send a SYN and don’t reply with ACK

 Server will wait for 511 seconds for ACK

 Finite queue size for incomplete connections

(1024)

Once the queue is full it doesn’t accept requests

15-411 Fall 2011 2011 Carnegie Mellon University 19

TCP Layer Attacks

• TCP Session Poisoning

 Send RST packet

 Will tear down connection

 Do you have to guess the exact sequence

number?

 Anywhere in window is fine

 For 64k window it takes 64k packets to reset

 About 15 seconds for a T1

15-411 Fall 2011 2011 Carnegie Mellon University 20

An Example

Shimomura (S) Trusted (T)

Mitnick

Finger

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

Showmount -e
SYN

15-411 Fall 2011 2011 Carnegie Mellon University 21

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

Syn flood

X

15-411 Fall 2011 2011 Carnegie Mellon University 22

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Send SYN to S spoofing as T

• Send ACK to S with a

guessed number

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

• S assumes that it has a

session with T

X
SYN

SYN|ACK

ACK

15-411 Fall 2011 2011 Carnegie Mellon University 23

Shimomura (S) Trusted (T)

Mitnick

An Example

• Finger @S

• showmount –e

• Send 20 SYN packets to S

• SYN flood T

• Send SYN to S spoofing as T

• Send ACK to S with a

guessed number

• Send “echo + + > ~/.rhosts”

• Attack when no one is around

• What other systems it trusts?

• Determine ISN behavior

• T won’t respond to packets

• S assumes that it has a

session with T

• Give permission to anyone

from anywhere

X
++ > rhosts

15-411 Fall 2011 2011 Carnegie Mellon University 24

Where do the problems come from?

• Protocol-level vulnerabilities

 Implicit trust assumptions in design

• Implementation vulnerabilities

 Both on routers and end-hosts

• Incomplete specifications

Often left to the imagination of programmers

15-411 Fall 2011 2011 Carnegie Mellon University 25

Outline – Part I

• Security Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

15-411 Fall 2011 2011 Carnegie Mellon University 26

Denial of Service

• Make a service unusable/unavailable

• Disrupt service by taking down hosts

 E.g., ping-of-death

• Consume host-level resources

 E.g., SYN-floods

• Consume network resources

 E.g., UDP/ICMP floods

15-411 Fall 2011 2011 Carnegie Mellon University 29

Reflector Attack

Attacker

Agent Agent

Reflector Reflector Reflector Reflector Reflector

Victim

Src = Victim

Destination = Reflector

Src = Reflector

Destination = Victim

Unsolicited traffic at victim from legitimate hosts

15-411 Fall 2011 2011 Carnegie Mellon University 30

Distributed DoS

Attacker

Handler Handler

Agent Agent Agent Agent Agent

Victim

15-411 Fall 2011 2011 Carnegie Mellon University 31

Distributed DoS

• Handlers are usually high volume servers
 Easy to hide the attack packets

• Agents are usually home users with DSL/Cable
 Already infected and the agent installed

• Very difficult to track down the attacker
 Multiple levels of indirection!

• Aside: How to distinguish DDos from flash
crowd?

15-411 Fall 2011 2011 Carnegie Mellon University 32

Outline – Part I

• Security, Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

15-411 Fall 2011 2011 Carnegie Mellon University 33

Worm Overview

• Self-propagate through network

• Typical Steps in worm propagation
 Probe host for vulnerable software

 Exploit the vulnerability (e.g., buffer overflow)
 Attacker gains privileges of the vulnerable program

 Launch copy on compromised host

• Spread at exponential rate
 10M hosts in < 5 minutes

 Hard to deal with manual intervention

15-411 Fall 2011 2011 Carnegie Mellon University 34

Scanning Techniques

• Random

• Local subnet

• Routing Worm

• Hitlist

• Topological

15-411 Fall 2011 2011 Carnegie Mellon University 35

Random Scanning

• 32-bit randomly generated IP address

 E.g., Slammer and Code Red I

What about IPv6?

• Hits black-holed IP space frequently

Only 28.6% of IP space is allocated

 Detect worms by monitoring unused addresses

 Honeypots/Honeynet

15-411 Fall 2011 2011 Carnegie Mellon University 36

Subnet Scanning

• Generate last 1, 2, or 3 bytes of IP address

randomly

• Code Red II and Blaster

• Some scans must be completely random to

infect whole internet

15-411 Fall 2011 2011 Carnegie Mellon University 40

Some proposals for countermeasures

• Better software safeguards

 Static analysis and array bounds checking (lint/e-fence)

 Safe versions of library calls

 gets(buf) -> fgets(buf, size, ...)

 sprintf(buf, ...) -> snprintf(buf, size, ...)

• Host-diversity

 Avoid same exploit on multiple machines

• Network-level: IP address space randomization

• Host-level solutions

 E.g., Memory randomization, Stack guard

• Rate-limiting: Contain the rate of spread

• Content-based filtering: signatures in packet payloads

15-411 Fall 2011 2011 Carnegie Mellon University 41

Outline – Part I

• Security, Vulnerabilities

• Denial of Service

• Worms

• Countermeasures: Firewalls/IDS

15-411 Fall 2011 2011 Carnegie Mellon University 42

Countermeasure Overview

• High level basic approaches

 Prevention

 Detection

 Resilience

• Requirements

 Security: soundness / completeness (false

positive / negative

Overhead

 Usability

15-411 Fall 2011 2011 Carnegie Mellon University 43

Design questions ..

• Why is it so easy to send unwanted traffic?

Worm, DDoS, virus, spam, phishing etc

• Where to place functionality for stopping
unwanted traffic?

 Edge vs. Core

 Routers vs. Middleboxes

• Redesign Internet architecture to detect
and prevent unwanted traffic?

15-411 Fall 2011 2011 Carnegie Mellon University 44

Firewalls

• Block/filter/modify traffic at network-level

 Limit access to the network

 Installed at perimeter of the network

• Why network-level?

 Vulnerabilities on many hosts in network

 Users don’t keep systems up to date

 Lots of patches to keep track of

 Zero-day exploits

15-411 Fall 2011 2011 Carnegie Mellon University 45

Firewalls (contd…)

• Firewall inspects traffic through it

• Allows traffic specified in the policy

• Drops everything else

• Two Types

 Packet Filters, Proxies

Internet

Internal Network

Firewall

15-411 Fall 2011 2011 Carnegie Mellon University 46

Packet Filters

• Selectively passes packets from one network

interface to another

• Usually done within a router between external and

internal network

• What/How to filter?
 Packet Header Fields

 IP source and destination addresses

 Application port numbers

 ICMP message types/ Protocol options etc.

 Packet contents (payloads)

15-411 Fall 2011 2011 Carnegie Mellon University 47

Packet Filters: Possible Actions

• Allow the packet to go through

• Drop the packet (Notify Sender/Drop Silently)

• Alter the packet (NAT?)

• Log information about the packet

15-411 Fall 2011 2011 Carnegie Mellon University 48

Some examples

• Block all packets from outside except for SMTP

servers

• Block all traffic to/from a list of domains

• Ingress filtering
 Drop pkt from outside with addresses inside the network

• Egress filtering
 Drop pkt from inside with addresses outside the network

15-411 Fall 2011 2011 Carnegie Mellon University 49

Typical Firewall Configuration

• Internal hosts can access DMZ

and Internet

• External hosts can access DMZ

only, not Intranet

• DMZ hosts can access Internet

only

• Advantages?

• If a service gets compromised

in DMZ it cannot affect internal

hosts

Internet

Intranet

DMZ

X
X

15-411 Fall 2011 2011 Carnegie Mellon University 50

Firewall implementation

• Stateless packet filtering firewall

• Rule (Condition, Action)

• Rules are processed in top-down order

 If a condition satisfied – action is taken

15-411 Fall 2011 2011 Carnegie Mellon University 51

Sample Firewall Rule

Dst

Port

Alow

Allow

Yes

Any

> 1023

22

TCP 22

TCP > 1023

Ext Int Out SSH-2

Int Ext In SSH-1

Dst

Addr
Proto

Ack

Set?
Action

Src

Port

Src

Addr
Dir Rule

Allow SSH from external hosts to internal hosts
Two rules

Inbound and outbound

How to know a packet is for SSH?
Inbound: src-port>1023, dst-port=22

Outbound: src-port=22, dst-port>1023

Protocol=TCP

Ack Set?

Problems?

SYN

SYN/ACK

ACK

Client Server

15-411 Fall 2011 2011 Carnegie Mellon University 52

Any Deny Any Any Any Any Any Any

Default Firewall Rules

• Egress Filtering

 Outbound traffic from external address Drop

 Benefits?

• Ingress Filtering

 Inbound Traffic from internal address Drop

 Benefits?

• Default Deny

 Why?

Any

Dst

Port

Any Deny Any Any Int Any Int In Ingress

Deny Any Any Ext Any Ext Out Egress

Dst

Addr
Proto

Ack

Set?
Action

Src

Port

Src

Addr
Dir Rule

Default

15-411 Fall 2011 2011 Carnegie Mellon University 53

Packet Filters

• Advantages

 Transparent to application/user

 Simple packet filters can be efficient

• Disadvantages

 Usually fail open

 Very hard to configure the rules

 May only have coarse-grained information?

 Does port 22 always mean SSH?

 Who is the user accessing the SSH?

15-411 Fall 2011 2011 Carnegie Mellon University 54

Alternatives

• Stateful packet filters

 Keep the connection states

 Easier to specify rules

 Problems?

 State explosion

 State for UDP/ICMP?

• Proxy Firewalls
 Two connections instead of one

 Either at transport level
 SOCKS proxy

 Or at application level
 HTTP proxy

15-411 Fall 2011 2011 Carnegie Mellon University 56

Intrusion Detection Systems

• Firewalls allow traffic only to legitimate hosts
and services

• Traffic to the legitimate hosts/services can
have attacks

• Solution?

 Intrusion Detection Systems

Monitor data and behavior

 Report when identify attacks

15-411 Fall 2011 2011 Carnegie Mellon University 62

Summary – Part I

• Security vulnerabilities are real!
 Protocol or implementation or bad specs

 Poor programming practices

 At all layers in protocol stack

• DoS/DDoS
 Resource utilization attacks

• Worm/Malware
 Exploit vulnerable services

 Exponential spread

• Countermeasures: Firewall/IDS

15-411 Fall 2011 2011 Carnegie Mellon University 63

Cryptography, Cryptographic Protocols

and Key Distribution

• Authentication

• Mutual Authentication

• Private/Symmetric Keys

• Public Keys

• Key Distribution

• Transport Layer and Above

15-411 Fall 2011 2011 Carnegie Mellon University 64

What do we need for a secure

communication channel?

• Authentication (Who am I talking to?)

• Confidentiality (Is my data hidden?)

• Integrity (Has my data been modified?)

• Availability (Can I reach the destination?)

15-411 Fall 2011 2011 Carnegie Mellon University 65

What is cryptography?

"cryptography is about communication in the

presence of adversaries."

 - Ron Rivest

“cryptography is using math and other crazy

tricks to approximate magic”

 - Unknown 441 TA

15-411 Fall 2011 2011 Carnegie Mellon University 66

What is cryptography?

 Tools to help us build secure communication

channels that provide:

 1) Authentication

 2) Integrity

 3) Confidentiality

15-411 Fall 2011 2011 Carnegie Mellon University 67

Cryptography As a Tool

• Using cryptography securely is not simple

• Designing cryptographic schemes correctly

is near impossible.

 Today we want to give you an idea of what

can be done with cryptography.

 Take a security course if you think you may

use it in the future

15-411 Fall 2011 2011 Carnegie Mellon University 68

The Great Divide

Symmetric Crypto

(Private key)

(E.g., AES)

Asymmetric Crypto

(Public key)

(E.g., RSA)

Shared secret

between parties? Yes

Speed of crypto

operations Slow

No

Fast

15-411 Fall 2011 2011 Carnegie Mellon University 69

Symmetric Key: Confidentiality

Motivating Example:

 You and a friend share a key K of L random bits, and
want to secretly share message M also L bits long.

Scheme:

 You send her the xor(M,K) and then she “decrypts”
using xor(M,K) again.

1) Do you get the right message to your friend?

2) Can an adversary recover the message M?

3) Can adversary recover the key K?

15-411 Fall 2011 2011 Carnegie Mellon University 70

Symmetric Key: Confidentiality

• One-time Pad (OTP) is secure but usually impactical

 Key is as long at the message

 Keys cannot be reused (why?)

Stream Ciphers:

Ex: RC4, A5

Block Ciphers:

Ex: DES, AES,

Blowfish

In practice, two types of ciphers

are used that require constant

length keys:

15-411 Fall 2011 2011 Carnegie Mellon University 71

Symmetric Key: Confidentiality

• Stream Ciphers (ex: RC4)

PRNG
Pseudo-Random stream of L bits

Message of Length L bits

XOR

=

Encrypted Ciphertext

K A-B

Bob uses KA-B as PRNG seed, and XORs encrypted text

to get the message back (just like OTP).

Alic

e:

15-411 Fall 2011 2011 Carnegie Mellon University 72

Symmetric Key: Confidentiality

Block 4 Block 3 Block 2 Block 1

Round #1 Round #2 Round #n

Block 1

 Block Ciphers (ex: AES)

K A-B

Alice:

Bob breaks the ciphertext into blocks, feeds it through

decryption engine using KA-B to recover the message.

Block 2 Block 3 Block 4

(fixed block size,

e.g. 128 bits)

15-411 Fall 2011 2011 Carnegie Mellon University 73

Cryptographic Hash Functions

• Consistent
 hash(X) always yields same result

• One-way
 given Y, can’t find X s.t. hash(X) = Y

• Collision resistant
 given hash(W) = Z, can’t find X such that hash(X) = Z

Hash Fn Message of arbitrary length
Fixed Size

Hash

15-411 Fall 2011 2011 Carnegie Mellon University 74

Symmetric Key: Integrity

• Hash Message Authentication Code (HMAC)

Hash Fn
Message

MAC Message

Alice Transmits Message & MAC

Why is this secure?

How do properties of a hash function help us?

MAC

Step #1:

Alice creates

MAC

Step #2 Step #3

Bob computes MAC with

message and KA-B to verify.

K A-B

15-411 Fall 2011 2011 Carnegie Mellon University 75

Symmetric Key: Authentication

• You already know how to do this!

 (hint: think about how we showed integrity)

Hash Fn
I am Bob

A43FF234

Alice receives the hash, computes a hash with KA-B , and she knows the sender

is Bob

whoops!

K A-B

15-411 Fall 2011 2011 Carnegie Mellon University 76

Symmetric Key: Authentication

 What if Mallory overhears the hash sent by Bob, and
then “replays” it later?

ISP A

ISP D

ISP C

ISP B

Hello, I’m

Bob. Here’s

the hash to

“prove” it

A43FF234

15-411 Fall 2011 2011 Carnegie Mellon University 77

Symmetric Key: Authentication

• A “Nonce”
 A random bitstring used only once. Alice sends nonce to Bob as a

“challenge”. Bob Replies with “fresh” MAC result.

Hash
Nonce

B4FE64

Bob

K A-B

Nonce

B4FE64

Alice

Performs same

hash with KA-B

and compares

results

15-411 Fall 2011 2011 Carnegie Mellon University 78

Symmetric Key: Authentication

• A “Nonce”
 A random bitstring used only once. Alice sends nonce to

Bob as a “challenge”. Bob Replies with “fresh” MAC
result.

Nonce

Alice

?!?!

If Alice sends Mallory a nonce,

she cannot compute the

corresponding MAC without K A-B

Mallory

15-411 Fall 2011 2011 Carnegie Mellon University 79

Symmetric Key Crypto Review

• Confidentiality: Stream & Block Ciphers

• Integrity: HMAC

• Authentication: HMAC and Nonce

Questions??

Are we done? Not Really:

1) Number of keys scales as O(n2)

2) How to securely share keys in the first place?

15-411 Fall 2011 2011 Carnegie Mellon University 83

Asymmetric Key Crypto:

• Instead of shared keys, each person has a

“key pair”
Bob’s public key

Bob’s private

key

KB

KB
-1

 The keys are inverses, so: KB
-1 (KB (m)) = m

15-411 Fall 2011 2011 Carnegie Mellon University 84

Asymmetric Key Crypto:

 It is believed to be computationally unfeasible

to derive KB
-1 from KB or to find any way to get

M from KB(M) other than using KB
-1 .

=> KB can safely be made public.

 Note: We will not explain the computation that KB(m) entails, but rather

treat these functions as black boxes with the desired properties.

15-411 Fall 2011 2011 Carnegie Mellon University 85

Asymmetric Key: Confidentiality

ciphertext encryption

algorithm
decryption

algorithm

Bob’s public

key

plaintext

message

KB (m)

Bob’s private

key

m = KB
-1 (KB (m))

KB

KB
-1

15-411 Fall 2011 2011 Carnegie Mellon University 86

Asymmetric Key: Sign & Verify

• The message must be from Bob, because it must be

the case that S = KB
-1(M), and only Bob has KB

-1 !

 If we are given a message M, and a value S

such that KB(S) = M, what can we conclude?

 This gives us two primitives:
 Sign (M) = KB

-1(M) = Signature S

 Verify (S, M) = test(KB(S) == M)

15-411 Fall 2011 2011 Carnegie Mellon University 87

Asymmetric Key: Integrity & Authentication

• We can use Sign() and Verify() in a similar manner as

our HMAC in symmetric schemes.

Integrity:
S = Sign(M) Message M

Receiver must only check Verify(M, S)

Authentication:
Nonce

S = Sign(Nonce)

Verify(Nonce, S)

15-411 Fall 2011 2011 Carnegie Mellon University 88

Asymmetric Key Review:

• Confidentiality: Encrypt with Public Key of

Receiver

• Integrity: Sign message with private key of

the sender

• Authentication: Entity being authenticated

signs a nonce with private key, signature is

then verified with the public key

But, these operations are computationally

expensive*

15-411 Fall 2011 2011 Carnegie Mellon University 89

One last “little detail”…

How do I get these keys in the first place??

Remember:

• Symmetric key primitives assumed Alice and Bob
had already shared a key.

• Asymmetric key primitives assumed Alice knew
Bob’s public key.

 This may work with friends, but when was the last
time you saw Amazon.com walking down the street?

15-411 Fall 2011 2011 Carnegie Mellon University 90

Symmetric Key Distribution

• How does Andrew do this?

Andrew Uses Kerberos, which relies on a

Key Distribution Center (KDC) to establish

shared symmetric keys.

15-411 Fall 2011 2011 Carnegie Mellon University 91

Key Distribution Center (KDC)

• Alice, Bob need shared symmetric key.

• KDC: server shares different secret key with each

registered user (many users)

• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC

KP-KDC

KDC

15-411 Fall 2011 2011 Carnegie Mellon University 92

Key Distribution Center (KDC)

Alice

knows R1
Bob knows to

use R1 to

communicate

with Alice

Alice and Bob communicate: using R1 as

session key for shared symmetric encryption

Q: How does KDC allow Bob, Alice to determine shared symmetric

secret key to communicate with each other?

KDC

generates

R1

KB-KDC(A,R1)

KA-KDC(A,B)

KA-KDC(R1, KB-KDC(A,R1))

15-411 Fall 2011 2011 Carnegie Mellon University 93

How Useful is a KDC?

• Must always be online to support secure

communication

• KDC can expose our session keys to others!

• Centralized trust and point of failure.

 In practice, the KDC model is mostly used

within single organizations (e.g. Kerberos)

but not more widely.

15-411 Fall 2011 2011 Carnegie Mellon University 94

Certification Authorities

• Certification authority (CA): binds public key to

particular entity, E.

• An entity E registers its public key with CA.

 E provides “proof of identity” to CA.

 CA creates certificate binding E to its public key.

 Certificate contains E’s public key AND the CA’s signature of

E’s public key.

Bob’s

public

key

Bob’s

identifying

information

CA

generates

S = Sign(KB)

CA

private

key

certificate = Bob’s

public key and

signature by CA

KB

K-1 CA

KB

15-411 Fall 2011 2011 Carnegie Mellon University 95

Certification Authorities

• When Alice wants Bob’s public key:

 Gets Bob’s certificate (Bob or elsewhere).

 Use CA’s public key to verify the signature within Bob’s
certificate, then accepts public key

Verify(S, KB)

CA

public

key
KCA

KB If signature

is valid, use

KB

15-411 Fall 2011 2011 Carnegie Mellon University 96

Certificate Contents

• info algorithm and key value itself (not shown)

 Cert owner

 Cert issuer

 Valid dates

 Fingerprint

of signature

15-411 Fall 2011 2011 Carnegie Mellon University 98

Transport Layer Security (TLS)

aka Secure Socket Layer (SSL)

• Used for protocols like HTTPS

• Special TLS socket layer between application and

TCP (small changes to application).

• Handles confidentiality, integrity, and authentication.

• Uses “hybrid” cryptography.

15-411 Fall 2011 2011 Carnegie Mellon University 99

Setup Channel with TLS “Handshake”

Handshake Steps:

1) Client and server negotiate

exact cryptographic protocols

2) Client validates public key

certificate with CA public key.

3) Client encrypts secret random

value with server’s key, and

sends it as a challenge.

4) Server decrypts, proving it has

the corresponding private key.

5) This value is used to derive

symmetric session keys for

encryption & MACs.

15-411 Fall 2011 2011 Carnegie Mellon University 101

Summary – Part II

• Internet design and growth => security challenges

• Symmetric (pre-shared key, fast) and asymmetric

(key pairs, slow) primitives provide:

 Confidentiality

 Integrity

 Authentication

• “Hybrid Encryption” leverages strengths of both.

• Great complexity exists in securely acquiring keys.

• Crypto is hard to get right, so use tools from others,

don’t design your own (e.g. TLS).

15-411 Fall 2011 2011 Carnegie Mellon University 102

Resources

• Textbook: 8.1 – 8.3

• Wikipedia for overview of Symmetric/Asymmetric primitives

and Hash functions.

• OpenSSL (www.openssl.org): top-rate open source code

for SSL and primitive functions.

• “Handbook of Applied Cryptography” available free online:

www.cacr.math.uwaterloo.ca/hac/

http://www.openssl.org/

