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Our “Narrow” Focus 

• Yes: 

 Protecting network resources and limiting 

connectivity (Part I) 

 Creating a “secure channel” for communication  

(Part II) 

• No: 

 Preventing software vulnerabilities & malware, 

or “social engineering”.   
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Flashback .. Internet design goals 

1. Interconnection 

2. Failure resilience 

3. Multiple types of service 

4. Variety of networks 

5. Management of resources 

6. Cost-effective 

7. Low entry-cost 

8. Accountability for resources 

   Where is security? 
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Why did they leave it out? 

• Designed for connectivity 

 

• Network designed with implicit trust 

 No “bad” guys 

 

• Can’t security be provided at the edge? 

 Encryption, Authentication etc 

 End-to-end arguments in system design 
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Security Vulnerabilities 

• At every layer in the protocol stack! 

 

• Network-layer attacks 

 IP-level vulnerabilities 

 Routing attacks 

 

• Transport-layer attacks 

 TCP vulnerabilities 

 

• Application-layer attacks 
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IP-level vulnerabilities 

• IP addresses are provided by the source 

 Spoofing attacks 

 

• Using  IP address for authentication 

  e.g., login with .rhosts  

 

• Some “features” that have been exploited 

 Fragmentation  

 Broadcast for traffic amplification  
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Security Flaws in IP 

• The IP addresses are filled in by the originating host 

 Address spoofing 

• Using source address for authentication 

 r-utilities (rlogin, rsh, rhosts etc..) 

Internet 

2.1.1.1 C 

1.1.1.1 1.1.1.2 A B 

1.1.1.3 S 

•Can A claim it is B to 

the server S? 

•ARP Spoofing 

•Can C claim it is B to 

the server S? 

•Source Routing 
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ARP Spoofing 

• Attacker uses ARP protocol to associate MAC 

address of attacker with another host's IP address 

• E.g. become the default gateway: 

 Forward packets to real gateway (interception) 

 Alter packets and forward (man-in-the-middle attack) 

 Use non-existant MAC address or just drop packets 

(denial of service attack) 

• ARP Spoofing used in hotel & airport networks to 

direct new hosts to register before getting 

"connected" 
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Source Routing 

• ARP spoofing cannot redirect packets to 
another network 

• We have studied routing protocols: routers 
do all the work, so if you spoof an IP source 
address, replies go to the spoofed host 

• An option in IP is to provide a route in the 
packet: source routing. 

• Equivalent to tunneling. 

• Attack: spoof the host IP address and 
specify a source route back to the attacker. 
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Smurf Attack 

Attacking System 

Internet 

Broadcast 

Enabled 

Network 

Victim System 

Ping request to a  

broadcast address 

with source = victim's 

IP address 

Ping request to  

broadcast address 

with source = victim's 

IP address 

Ping reply from  

every host 

Replies directed 

to victim 
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ICMP Attacks 

• ICMP: Internet Control Message Protocol 

• No authentication 

• ICMP redirect message 

• Oversized ICMP messages can crash hosts 

• Destination unreachable 
 Can cause the host to drop connection 

• Many more…  
 http://www.sans.org/rr/whitepapers/threats/477.php 
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ICMP Redirect 

• ICMP Redirect message: tell a host to use a 

different gateway on the same network 

(saves a hop for future packets) 

Host A 

"Good" Gateway 
Attacker 

Spoof an ICMP Redirect message from "Good" 

Gateway to redirect traffic through Attacker TCP packets 
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Routing attacks 

• Divert traffic to malicious nodes 
 Black-hole 

 Eavesdropping 

 

• How to implement routing attacks? 
 Distance-Vector: 

 Link-state: 

 

• BGP vulnerabilities 
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Routing attacks 

• Divert traffic to malicious nodes 
 Black-hole 

 Eavesdropping 

 

• How to implement routing attacks? 
 Distance-Vector: Announce low-cost routes 

 Link-state: Dropping links from topology 

 

• BGP vulnerabilities 
 Prefix-hijacking 

 Path alteration 



15-411 Fall 2011  2011 Carnegie Mellon University 15 

TCP-level attacks 

• SYN-Floods 

 Implementations create state at servers before 
connection is fully established 

 

• Session hijack 

 Pretend to be a trusted host 

 Sequence number guessing 

 

• Session resets 

 Close a legitimate connection 
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Session Hijack 

Trusted (T) 

Malicious (M) 

Server 

First send a legitimate  

SYN to server 
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Session Hijack 

Trusted (T) 

Malicious (M) 

Server 

Using ISN_S1 from earlier  

connection guess ISN_S2! 
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TCP Layer Attacks 

• TCP SYN Flooding 

 Exploit state allocated at server after initial SYN 

packet 

 Send a SYN and don’t reply with ACK 

 Server will wait for 511 seconds for ACK 

 Finite queue size for incomplete connections 

(1024) 

Once the queue is full it doesn’t accept requests 
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TCP Layer Attacks 

• TCP Session Poisoning 

 Send RST packet 

 Will tear down connection 

 Do you have to guess the exact sequence 

number? 

 Anywhere in window is fine 

 For 64k window it takes 64k packets to reset 

 About 15 seconds for a T1 
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An Example 

Shimomura (S) Trusted (T) 

Mitnick 

Finger 

• Finger @S 

• showmount –e 

• Send 20 SYN packets to S 

 

• Attack when no one is around 

• What other systems it trusts? 

• Determine ISN behavior 

Showmount -e 
SYN 
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Shimomura (S) Trusted (T) 

Mitnick 

An Example 

• Finger @S 

• showmount –e 

• Send 20 SYN packets to S 

• SYN flood T 

• Attack when no one is around 

• What other systems it trusts? 

• Determine ISN behavior 

• T won’t respond to packets 

Syn flood 

X 
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Shimomura (S) Trusted (T) 

Mitnick 

An Example 

• Finger @S 

• showmount –e 

• Send 20 SYN packets to S 

• SYN flood T 

• Send SYN to S spoofing as T 

• Send ACK to S with a 

guessed number 

• Attack when no one is around 

• What other systems it trusts? 

• Determine ISN behavior 

• T won’t respond to packets 

• S assumes that it has a 

session with T 

X 
SYN 

SYN|ACK 

ACK 
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Shimomura (S) Trusted (T) 

Mitnick 

An Example 

• Finger @S 

• showmount –e 

• Send 20 SYN packets to S 

• SYN flood T 

• Send SYN to S spoofing as T 

• Send ACK to S with a 

guessed number 

• Send “echo + + > ~/.rhosts” 

• Attack when no one is around 

• What other systems it trusts? 

• Determine ISN behavior 

• T won’t respond to packets 

• S assumes that it has a 

session with T 

• Give permission to anyone 

from anywhere 

X 
++ > rhosts 
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Where do the problems come from? 

• Protocol-level vulnerabilities 

 Implicit trust assumptions in design 

 

• Implementation vulnerabilities 

 Both on routers and end-hosts 

 

• Incomplete specifications 

Often left to the imagination of programmers 
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Outline – Part I 

• Security Vulnerabilities 

 

• Denial of Service 

 

• Worms 

 

• Countermeasures: Firewalls/IDS 
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Denial of Service 

• Make a service unusable/unavailable 

 

• Disrupt service by taking down hosts 

 E.g., ping-of-death 

 

• Consume host-level resources 

 E.g., SYN-floods 

 

• Consume network resources 

 E.g., UDP/ICMP floods 
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Reflector Attack 

Attacker 

Agent Agent 

Reflector Reflector Reflector Reflector Reflector 

Victim 

Src = Victim 

Destination = Reflector 

Src = Reflector 

Destination = Victim 

Unsolicited traffic at victim from legitimate hosts 
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Distributed DoS 

Attacker 

Handler Handler 

Agent Agent Agent Agent Agent 

Victim 
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Distributed DoS 

 

• Handlers are usually high volume servers 
 Easy to hide the attack packets 

 

• Agents are usually home users with DSL/Cable 
 Already infected and the agent installed 

 

• Very difficult to track down the attacker 
 Multiple levels of indirection! 

• Aside: How to distinguish DDos from flash 
crowd? 
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Outline – Part I 

• Security, Vulnerabilities 

 

• Denial of Service 

 

• Worms 

 

• Countermeasures: Firewalls/IDS 
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Worm Overview 

• Self-propagate through network 

 

• Typical Steps in worm propagation 
 Probe host for vulnerable software  

 Exploit the vulnerability (e.g., buffer overflow) 
 Attacker gains privileges of the vulnerable program 

 Launch copy on compromised host 

 

• Spread at exponential rate  
 10M hosts in < 5 minutes 

 Hard to deal with manual intervention 
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Scanning Techniques 

• Random 

 

• Local subnet 

 

• Routing Worm 

 

• Hitlist 

 

• Topological 
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Random Scanning 

• 32-bit randomly generated IP address 

 E.g., Slammer and Code Red I 

What about IPv6? 

 

• Hits black-holed IP space frequently 

Only 28.6% of IP space is allocated 

 Detect worms by monitoring unused addresses 

 Honeypots/Honeynet 
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Subnet Scanning 

• Generate last 1, 2, or 3 bytes of IP address 

randomly 

 

• Code Red II and Blaster 

 

• Some scans must be completely random to 

infect whole internet 
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Some proposals for countermeasures 

• Better software safeguards 

 Static analysis and array bounds checking (lint/e-fence) 

 Safe versions of library calls  

 gets(buf) -> fgets(buf, size, ...) 

 sprintf(buf, ...) -> snprintf(buf, size, ...) 

• Host-diversity 

 Avoid same exploit on multiple machines 

• Network-level: IP address space randomization 

• Host-level solutions 

 E.g., Memory randomization, Stack guard 

• Rate-limiting: Contain the rate of spread 

• Content-based filtering: signatures in packet payloads 



15-411 Fall 2011  2011 Carnegie Mellon University 41 

Outline – Part I 

• Security, Vulnerabilities 

 

• Denial of Service 

 

• Worms 

 

• Countermeasures: Firewalls/IDS 
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Countermeasure Overview 

• High level basic approaches 

 Prevention 

 Detection 

 Resilience  

• Requirements 

 Security: soundness / completeness (false 

positive / negative 

Overhead 

 Usability 
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Design questions .. 

• Why is it so easy to send unwanted traffic? 

Worm, DDoS, virus, spam, phishing etc 

• Where to place functionality for stopping 
unwanted traffic? 

 Edge vs. Core 

 Routers vs. Middleboxes 

• Redesign Internet architecture to detect 
and prevent unwanted traffic? 
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Firewalls 

• Block/filter/modify traffic at network-level  

 Limit access to the network 

 Installed at perimeter of the network 

 

• Why network-level? 

 Vulnerabilities on many hosts in network 

 Users don’t keep systems up to date 

 Lots of patches to keep track of 

 Zero-day exploits  
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Firewalls (contd…) 

• Firewall inspects traffic through it 

• Allows traffic specified in the policy 

• Drops everything else 

• Two Types 

 Packet Filters, Proxies 

Internet 

Internal Network 

Firewall 
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Packet Filters 

• Selectively passes packets from one network 

interface to another 

 

• Usually done within a router between external and 

internal network  

 

• What/How to filter? 
 Packet Header Fields 

 IP source and destination addresses 

 Application port numbers 

 ICMP message types/ Protocol options etc. 

 Packet contents (payloads) 
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Packet Filters: Possible Actions  

• Allow the packet to go through 
 

• Drop the packet (Notify Sender/Drop Silently) 
 

• Alter the packet (NAT?) 
 

• Log information about the packet 
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Some examples 

• Block all packets from outside except for SMTP 

servers 

 

• Block all traffic to/from a list of domains 

 

• Ingress filtering 
 Drop pkt from outside with addresses inside the network 

 

• Egress filtering 
 Drop pkt from inside with addresses outside the network 
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Typical Firewall Configuration 

• Internal hosts can access DMZ 

and Internet 

• External hosts can access DMZ 

only, not Intranet 

• DMZ hosts can access Internet 

only 

• Advantages? 

• If a service gets compromised 

in DMZ it cannot affect internal 

hosts 

Internet 

Intranet 

DMZ 

X 
X 



15-411 Fall 2011  2011 Carnegie Mellon University 50 

Firewall implementation 

• Stateless packet filtering firewall 

 

• Rule  (Condition, Action) 

 

• Rules are processed in top-down order 

 If a condition satisfied – action is taken 
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Sample Firewall Rule 

Dst 

Port 

Alow 

Allow 

Yes 

Any 

> 1023 

22 

TCP 22 

TCP > 1023 

Ext Int Out SSH-2 

Int Ext In SSH-1 

Dst 

Addr 
Proto 

Ack 

Set? 
Action 

Src 

Port 

Src 

Addr 
Dir Rule 

Allow SSH from external hosts to internal hosts 
Two rules 

Inbound and outbound 

How to know a packet is for SSH? 
Inbound: src-port>1023, dst-port=22 

Outbound: src-port=22, dst-port>1023 

Protocol=TCP 

Ack Set? 

Problems? 

SYN 

SYN/ACK 

ACK 

Client Server 
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Any Deny Any Any Any Any Any Any 

Default Firewall Rules 

• Egress Filtering 

 Outbound traffic from external address  Drop 

 Benefits? 

• Ingress Filtering 

 Inbound Traffic from internal address  Drop 

 Benefits? 

• Default Deny 

 Why? 

Any 

Dst 

Port 

Any Deny Any Any Int Any Int In Ingress 

Deny Any Any Ext Any Ext Out Egress 

Dst 

Addr 
Proto 

Ack 

Set? 
Action 

Src 

Port 

Src 

Addr 
Dir Rule 

Default 
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Packet Filters 

• Advantages 

 Transparent to application/user 

 Simple packet filters can be efficient 

 

 

• Disadvantages 

 Usually fail open 

 Very hard to configure the rules 

 May only have coarse-grained information?  

 Does port 22 always mean SSH? 

 Who is the user accessing the SSH? 
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Alternatives 

• Stateful packet filters 

 Keep the connection states 

 Easier to specify rules 

 Problems? 

 State explosion 

 State for UDP/ICMP? 

• Proxy Firewalls 
 Two connections instead of one 

 Either at transport level 
 SOCKS proxy 

 Or at application level 
 HTTP proxy 
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Intrusion Detection Systems 

• Firewalls allow traffic only to legitimate hosts 
and services 

 

• Traffic to the legitimate hosts/services can 
have attacks 

 

• Solution? 

 Intrusion Detection Systems 

Monitor data and behavior 

 Report when identify attacks 
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Summary – Part I 

• Security vulnerabilities are real! 
 Protocol or implementation or bad specs 

 Poor programming practices 

 At all layers in protocol stack 

 

• DoS/DDoS 
  Resource utilization attacks 

 

• Worm/Malware 
 Exploit vulnerable services 

 Exponential spread 

 

• Countermeasures: Firewall/IDS 



15-411 Fall 2011  2011 Carnegie Mellon University 63 

Cryptography, Cryptographic Protocols 

and Key Distribution 

• Authentication 

• Mutual Authentication 

• Private/Symmetric Keys 

• Public Keys 

• Key Distribution 

• Transport Layer and Above 
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What do we need for a secure 

communication channel?   

• Authentication (Who am I talking to?) 

 

• Confidentiality (Is my data hidden?) 

 

• Integrity (Has my data been modified?) 

 

• Availability (Can I reach the destination?)   
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What is cryptography? 

"cryptography is about communication in the 

presence of adversaries."  

      - Ron Rivest 

 

“cryptography is using math and other crazy 

tricks to approximate magic” 

      - Unknown 441 TA 
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What is cryptography?   

 Tools to help us build secure communication 

channels that provide: 

 

 1) Authentication 

 2) Integrity 

 3) Confidentiality 
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Cryptography As a Tool 

• Using cryptography securely is not simple 

• Designing cryptographic schemes correctly 

is near impossible.   

 

 Today we want to give you an idea of what 

can be done with cryptography. 

 Take a security course if you think you may 

use it in the future 
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The Great Divide 

Symmetric Crypto 

(Private key) 

(E.g., AES) 

 

Asymmetric Crypto 

(Public key) 

(E.g., RSA) 

Shared secret 

between parties? Yes 

Speed of crypto 

operations Slow 

No 

Fast  
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Symmetric Key: Confidentiality 

Motivating Example:  

 You and a friend share a key K of L random bits, and 
want to secretly share message M also L bits long. 

 

Scheme:  

 You send her the xor(M,K) and then she “decrypts” 
using xor(M,K) again.   

1) Do you get the right message to your friend?   

2) Can an adversary recover the message M?   

3) Can adversary recover the key K? 
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Symmetric Key: Confidentiality 

• One-time Pad (OTP) is secure but usually impactical 

 Key is as long at the message 

 Keys cannot be reused (why?) 

Stream Ciphers: 

Ex: RC4, A5 

 

Block Ciphers: 

Ex: DES, AES, 

Blowfish 

 

In practice, two types of ciphers 

are used that require constant 

length keys:  
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Symmetric Key: Confidentiality 

• Stream Ciphers (ex: RC4) 

PRNG 
Pseudo-Random stream of L bits 

Message of Length L bits 

XOR 

= 

Encrypted Ciphertext 

K A-B 

Bob uses KA-B as PRNG seed, and XORs encrypted text 

to get the message back (just like OTP).   

Alic

e:  
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Symmetric Key: Confidentiality 

Block 4 Block 3 Block 2 Block 1 

Round #1 Round #2 Round #n 

Block 1 

 Block Ciphers (ex: AES) 

K A-B 

Alice: 

Bob breaks the ciphertext into blocks, feeds it through 

decryption engine using KA-B to recover the message. 

Block 2 Block 3 Block 4 

(fixed block size, 

e.g. 128 bits) 
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Cryptographic Hash Functions 

• Consistent        
 hash(X) always yields same result 

• One-way       
 given Y, can’t find X s.t. hash(X) = Y  

• Collision resistant      
 given hash(W) = Z, can’t find X such that hash(X) = Z  

 

Hash Fn Message of arbitrary length 
Fixed Size  

Hash 
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Symmetric Key: Integrity 

• Hash Message Authentication Code (HMAC)  

 

Hash Fn 
Message 

MAC Message 

Alice Transmits Message & MAC 

Why is this secure?  

How do properties of a hash function help us?   

MAC 

Step #1: 

Alice creates 

MAC 

Step #2 Step #3 

Bob computes MAC with 

message and KA-B to verify. 

K A-B 
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Symmetric Key: Authentication 

• You already know how to do this! 

 (hint: think about how we showed integrity) 

 

 

Hash Fn 
I am Bob 

A43FF234 

Alice receives the hash, computes a hash with KA-B , and she knows the sender 

is Bob 

whoops! 

K A-B 
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Symmetric Key: Authentication 

 What if Mallory overhears the hash sent by Bob, and 
then “replays” it later?   

ISP A 

 

ISP D 

 

ISP C 

 

ISP B 

 

Hello, I’m 

Bob. Here’s 

the hash to 

“prove” it 

A43FF234 
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Symmetric Key: Authentication 

• A “Nonce” 
 A random bitstring used only once. Alice sends nonce to Bob as a 

“challenge”.  Bob Replies with “fresh” MAC result.  

 

 

Hash  
Nonce 

B4FE64 

Bob 

K A-B 

Nonce 

B4FE64 

Alice 

Performs same 

hash with KA-B 

and compares 

results 



15-411 Fall 2011  2011 Carnegie Mellon University 78 

Symmetric Key: Authentication 

• A “Nonce” 
 A random bitstring used only once. Alice sends nonce to 

Bob as a “challenge”.  Bob Replies with “fresh” MAC 
result.  

 

 
Nonce 

Alice 

?!?! 

If Alice sends Mallory a nonce, 

she cannot compute the 

corresponding MAC without K A-B 

 

Mallory 
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Symmetric Key Crypto Review 

• Confidentiality:  Stream & Block Ciphers 

• Integrity:  HMAC 

• Authentication: HMAC and Nonce 

 

 
Questions?? 

Are we done?  Not Really: 

1) Number of keys scales as O(n2)  

2) How to securely share keys in the first place?  
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Asymmetric Key Crypto: 

• Instead of shared keys, each person has a 

“key pair” 
Bob’s public key    

Bob’s private 

key  

KB
  

KB
-1  

 The keys are inverses, so: KB
-1 (KB (m)) = m 
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Asymmetric Key Crypto: 

 It is believed to be computationally unfeasible 

to derive KB
-1 from KB or to find any way to get 

M from KB(M) other than using KB
-1 .   

 

=> KB can safely be made public. 

 
 Note: We will not explain the computation that KB(m) entails, but rather 

treat these functions as black boxes with the desired properties.   
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Asymmetric Key: Confidentiality 

ciphertext encryption 

algorithm 
decryption  

algorithm 

Bob’s public  

key  

plaintext 

message 

KB  (m) 

  

Bob’s private 

key  

m = KB
-1 (KB (m)) 

KB
  

KB
-1  
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Asymmetric Key: Sign & Verify 

• The message must be from Bob, because it must be 

the case that S = KB
-1(M), and only Bob has KB

-1 !  

 If we are given a message M, and a value S 

such that KB(S) = M, what can we conclude?  

 

 This gives us two primitives: 
 Sign (M) = KB

-1(M) = Signature S 

 Verify  (S, M) = test( KB(S) == M )  
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Asymmetric Key: Integrity & Authentication 

• We can use Sign() and Verify() in a similar manner as 

our HMAC in symmetric schemes. 

Integrity: 
S = Sign(M) Message M 

Receiver must only check Verify(M, S)  

Authentication: 
Nonce 

S = Sign(Nonce) 

Verify(Nonce, S) 
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Asymmetric Key Review: 

• Confidentiality: Encrypt with Public Key of 

Receiver 

• Integrity: Sign message with private key of 

the sender 

• Authentication: Entity being authenticated 

signs a nonce with private key, signature is 

then verified with the public key 

But, these operations are computationally 

expensive* 
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One last “little detail”… 

How do I get these keys in the first place?? 

Remember: 

  

• Symmetric key primitives assumed Alice and Bob 
had already shared a key. 

• Asymmetric key primitives assumed Alice knew 
Bob’s public key.   

 

 This may work with friends, but when was the last 
time you saw Amazon.com walking down the street? 
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Symmetric Key Distribution 

• How does Andrew do this? 

Andrew Uses Kerberos, which relies on a 

Key Distribution Center (KDC) to establish 

shared symmetric keys. 
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Key Distribution Center (KDC) 

• Alice, Bob need shared symmetric key. 

• KDC: server shares different secret key with each 

registered user (many users) 

• Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for 

communicating with KDC.  

KB-KDC 

KX-KDC 

KY-KDC 

KZ-KDC 

KP-KDC 

KB-KDC 

KA-KDC 

KA-KDC 

KP-KDC 

KDC 
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Key Distribution Center (KDC) 

Alice 

knows R1 
Bob knows to 

use  R1 to 

communicate 

with Alice 

Alice and Bob communicate: using R1 as  

session key for shared symmetric encryption  

Q:   How does KDC allow Bob, Alice to determine shared symmetric 

secret key to communicate with each other?  

KDC 

generates  

R1 

KB-KDC(A,R1)  

KA-KDC(A,B) 

KA-KDC(R1, KB-KDC(A,R1) ) 
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How Useful is a KDC? 

• Must always be online to support secure 

communication 

• KDC can expose our session keys to others! 

• Centralized trust and point of failure. 

 

 In practice, the KDC model is mostly used 

within single organizations (e.g. Kerberos) 

but not more widely.   
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Certification Authorities 

• Certification authority (CA): binds public key to 

particular entity, E. 

• An entity E registers its public key with CA. 

 E provides “proof of identity” to CA.  

 CA creates certificate binding E to its public key. 

 Certificate contains E’s public key AND the CA’s signature of 

E’s public key.   

Bob’s  

public 

key  

Bob’s  

identifying 

information  

CA 

generates 

S = Sign(KB) 

CA  

private 

key  

certificate = Bob’s 

public key and  

signature by CA 

KB  

K-1 CA  

KB  
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Certification Authorities 

• When Alice wants Bob’s public key: 

 Gets Bob’s certificate (Bob or elsewhere). 

 Use CA’s public key to verify the signature within Bob’s 
certificate, then accepts public key 

 

Verify(S, KB) 

 

CA  

public 

key  
KCA  

KB  If signature 

is valid, use 

KB 
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Certificate Contents 

• info algorithm and key value itself (not shown) 

 Cert owner 

 Cert issuer 

 Valid dates 

 Fingerprint 

of signature 
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Transport Layer Security (TLS) 

aka Secure Socket Layer (SSL) 

• Used for protocols like HTTPS 

 

• Special TLS socket layer between application and 

TCP (small changes to application). 

 

• Handles confidentiality, integrity, and authentication. 

 

• Uses “hybrid” cryptography.  
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Setup Channel with TLS “Handshake”  

Handshake Steps:  

1) Client and server negotiate 

exact cryptographic protocols 

2) Client validates public key 

certificate with CA public key.  

3) Client encrypts secret random 

value with server’s key, and 

sends it as a challenge.   

4) Server decrypts, proving it has 

the corresponding private key. 

5) This value is used to derive 

symmetric session keys for 

encryption & MACs. 
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Summary – Part II  

• Internet design and growth => security challenges 

• Symmetric (pre-shared key, fast) and asymmetric 

(key pairs, slow) primitives provide: 

 Confidentiality 

 Integrity 

 Authentication 

• “Hybrid Encryption” leverages strengths of both. 

• Great complexity exists in securely acquiring keys. 

• Crypto is hard to get right, so use tools from others, 

don’t design your own (e.g. TLS).   
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Resources 

• Textbook: 8.1 – 8.3 

 

• Wikipedia for overview of Symmetric/Asymmetric primitives 

and Hash functions.   

 

• OpenSSL (www.openssl.org): top-rate open source code 

for SSL and primitive functions.   

 

• “Handbook of Applied Cryptography” available free online: 

www.cacr.math.uwaterloo.ca/hac/  

 

http://www.openssl.org/

