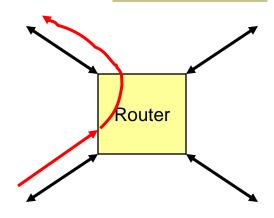
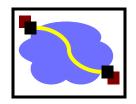


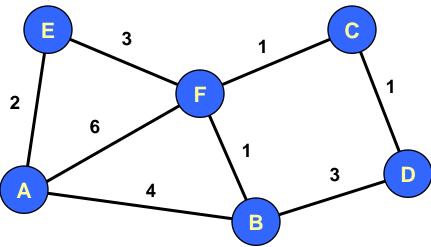

# 15-441 Computer Networking


Lecture 11: Intra-Domain Routing

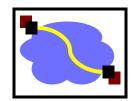
RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)


## **IP** Forwarding

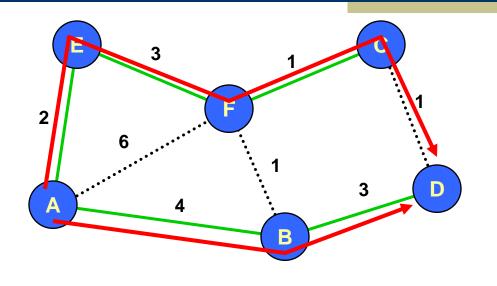



- The Story So Far...
  - IP addresses are structured to reflect Internet structure
  - IP packet headers carry these addresses
  - When Packet Arrives at Router
    - Examine header to determine intended destination
    - Look up in table to determine next hop in path
    - Send packet out appropriate port
- This/next lecture
  - How to generate the forwarding table




## **Graph Model**

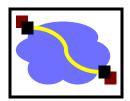



- Represent each router as node
- Direct link between routers represented by edge
  - Symmetric links ⇒ undirected graph
- Edge "cost" c(x,y) denotes measure of difficulty of using link
  - delay, \$ cost, or congestion level
- Task
  - Determine least cost path from every node to every other node
    - Path cost d(x,y) = sum of link costs



#### Routes from Node A




| Forwarding Table for A |      |             |  |  |  |  |
|------------------------|------|-------------|--|--|--|--|
| Dest                   | Cost | Next<br>Hop |  |  |  |  |
| А                      | 0    | Α           |  |  |  |  |
| В                      | 4    | В           |  |  |  |  |
| С                      | 6    | Е           |  |  |  |  |
| D                      | 7    | В           |  |  |  |  |
| E                      | 2    | E           |  |  |  |  |
| F                      | 5    | E           |  |  |  |  |



#### Properties

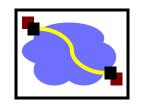
- Some set of shortest paths forms tree
  - Shortest path spanning tree
- Solution not unique
  - E.g., A-E-F-C-D also has cost 7

# Ways to Compute Shortest Paths



#### Centralized

- Collect graph structure in one place
- Use standard graph algorithm
- Disseminate routing tables

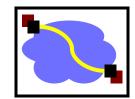

#### Link-state

- Every node collects complete graph structure
- Each computes shortest paths from it
- Each generates own routing table

#### Distance-vector

- No one has copy of graph
- Nodes construct their own tables iteratively
- Each sends information about its table to neighbors

## **Outline**




Distance Vector


Link State

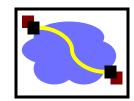
Routing Hierarchy

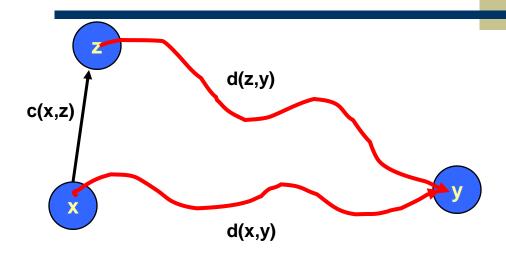
#### Distance-Vector Method



| Initial Table for A |      |             |  |  |  |  |
|---------------------|------|-------------|--|--|--|--|
| Dest                | Cost | Next<br>Hop |  |  |  |  |
| Α                   | 0    | Α           |  |  |  |  |
| В                   | 4    | В           |  |  |  |  |
| С                   | 8    | 1           |  |  |  |  |
| D                   | 8    | 1           |  |  |  |  |
| Е                   | 2    | Е           |  |  |  |  |
| F                   | 6    | F           |  |  |  |  |

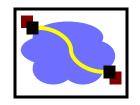



#### Idea


- At any time, have cost/next hop of best known path to destination
- Use cost ∞ when no path known

#### Initially

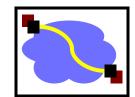
Only have entries for directly connected nodes


### Distance-Vector Update



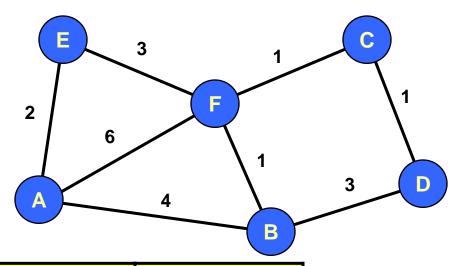


Update(x,y,z)
 d ← c(x,z) + d(z,y) # Cost of path from x to y with first hop z
 if d < d(x,y)
 # Found better path
 return d,z # Updated cost / next hop
 else
 return d(x,y), nexthop(x,y) # Existing cost / next hop</li>


## Algorithm

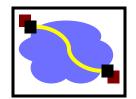


- Bellman-Ford algorithm
- Repeat


Until converge

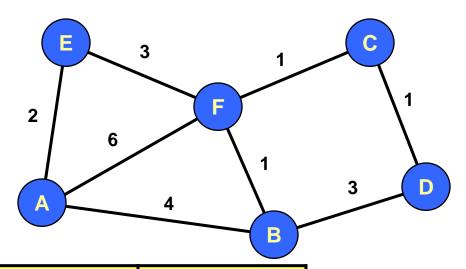
# Start




#### **Optimum 1-hop paths**

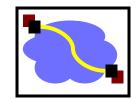
| Ta  | able for | Α   | Ta  | able for | В   |
|-----|----------|-----|-----|----------|-----|
| Dst | Cst      | Нор | Dst | Cst      | Нор |
| Α   | 0        | Α   | Α   | 4        | Α   |
| В   | 4        | В   | В   | 0        | В   |
| С   | 8        | _   | С   | $\infty$ | _   |
| D   | 8        | _   | D   | 3        | D   |
| Ш   | 2        | Е   | Е   | 8        | _   |
| F   | 6        | F   | F   | 1        | F   |
|     |          |     |     |          |     |




| Ta  | able fo | or C | Ta  | ıble for | D   | Ta  | ble for | Е   | Ta  | able for | F   |
|-----|---------|------|-----|----------|-----|-----|---------|-----|-----|----------|-----|
| Dst | Cst     | Нор  | Dst | Cst      | Нор | Dst | Cst     | Нор | Dst | Cst      | Нор |
| Α   | 8       | 1    | Α   | 8        | _   | Α   | 2       | Α   | Α   | 6        | Α   |
| В   | 8       | 1    | В   | 3        | В   | В   | 8       | _   | В   | 1        | В   |
| С   | 0       | С    | C   | 1        | С   | C   | 8       | _   | С   | 1        | С   |
| D   | 1       | D    | D   | 0        | D   | D   | 8       | _   | D   | $\infty$ | _   |
| Е   | 8       | _    | Е   | 8        | _   | Е   | 0       | Е   | Е   | 3        | Е   |
| F   | 1       | F    | F   | 8        | _   | F   | 3       | F   | F   | 0        | F   |

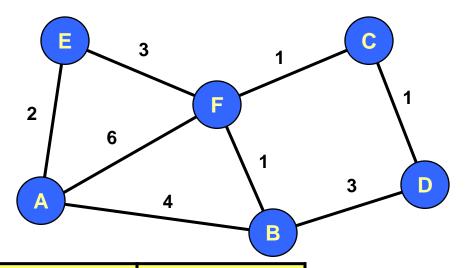
## Iteration #1




#### **Optimum 2-hop paths**

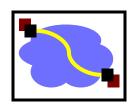
| ıble for | Α             | Table for B         |                                                                                                                                                                                             |                                                                                                                                                                                                                                                           |  |
|----------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Cst      | Нор           | Dst                 | Cst                                                                                                                                                                                         | Нор                                                                                                                                                                                                                                                       |  |
| 0        | Α             | Α                   | 4                                                                                                                                                                                           | Α                                                                                                                                                                                                                                                         |  |
| 4        | В             | В                   | 0                                                                                                                                                                                           | В                                                                                                                                                                                                                                                         |  |
| 7        | F             | O                   | 2                                                                                                                                                                                           | F                                                                                                                                                                                                                                                         |  |
| 7        | В             | D                   | 3                                                                                                                                                                                           | D                                                                                                                                                                                                                                                         |  |
| 2        | Е             | Е                   | 4                                                                                                                                                                                           | F                                                                                                                                                                                                                                                         |  |
| 5        | Е             | F                   | 1                                                                                                                                                                                           | F                                                                                                                                                                                                                                                         |  |
|          | Cst 0 4 7 7 2 | 0 A 4 B 7 F 7 B 2 E | Cst         Hop         Dst           0         A         A           4         B         B           7         F         C           7         B         D           2         E         E | Cst         Hop         Dst         Cst           0         A         A         4           4         B         B         0           7         F         C         2           7         B         D         3           2         E         E         4 |  |




| Ta  | ıble for | С   | Ta  | ble for  | D   | Ta  | able for | E   | Ta  | able for | F   |
|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|
| Dst | Cst      | Нор |
| Α   | 7        | F   | Α   | 7        | В   | Α   | 2        | Α   | Α   | 5        | В   |
| В   | 2        | F   | В   | 3        | В   | В   | 4        | F   | В   | 1        | В   |
| С   | 0        | С   | С   | 1        | С   | С   | 4        | F   | С   | 1        | С   |
| D   | 1        | D   | D   | 0        | D   | D   | $\infty$ | _   | D   | 2        | С   |
| Е   | 4        | F   | Е   | $\infty$ | _   | Е   | 0        | Е   | Е   | 3        | Е   |
| F   | 1        | F   | F   | 2        | С   | F   | 3        | F   | F   | 0        | F   |

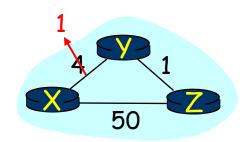
## Iteration #2

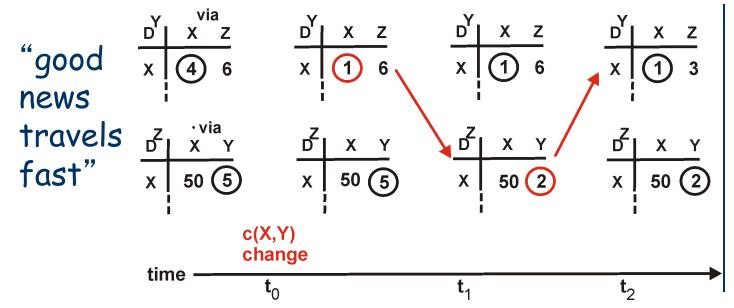



#### **Optimum 3-hop paths**

| Ta  | able for | Α   | Ta  | able for | В   |
|-----|----------|-----|-----|----------|-----|
| Dst | Cst      | Нор | Dst | Cst      | Нор |
| Α   | 0        | Α   | Α   | 4        | Α   |
| В   | 4        | В   | В   | 0        | В   |
| С   | 6        | Е   | С   | 2        | F   |
| D   | 7        | В   | D   | 3        | D   |
| Ш   | 2        | Е   | Ш   | 4        | F   |
| F   | 5        | Е   | F   | 1        | F   |
|     |          |     |     |          |     |

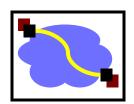



| Ta  | ıble for | С   | Ta  | ble for | D   | Ta  | able for | E   | Ta  | able for | F   |
|-----|----------|-----|-----|---------|-----|-----|----------|-----|-----|----------|-----|
| Dst | Cst      | Нор | Dst | Cst     | Нор | Dst | Cst      | Нор | Dst | Cst      | Нор |
| Α   | 6        | F   | Α   | 7       | В   | Α   | 2        | Α   | Α   | 5        | В   |
| В   | 2        | F   | В   | 3       | В   | В   | 4        | F   | В   | 1        | В   |
| С   | 0        | С   | С   | 1       | С   | С   | 4        | F   | С   | 1        | С   |
| D   | 1        | D   | D   | 0       | D   | D   | 5        | F   | D   | 2        | С   |
| Е   | 4        | F   | Ш   | 5       | С   | Е   | 0        | Е   | Ш   | 3        | Е   |
| F   | 1        | F   | F   | 2       | С   | F   | 3        | F   | F   | 0        | F   |


# Distance Vector: Link Cost Changes

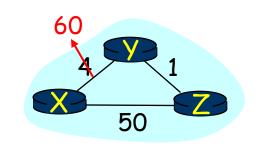


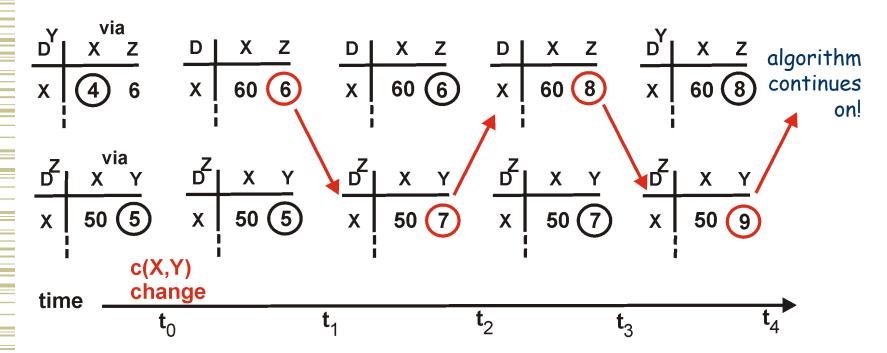
#### Link cost changes:


- Node detects local link cost change
- Updates distance table
- If cost change in least cost path, notify neighbors

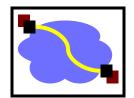





algorithm terminates

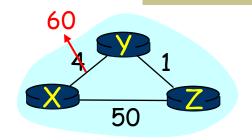

# Distance Vector: Link Cost Changes

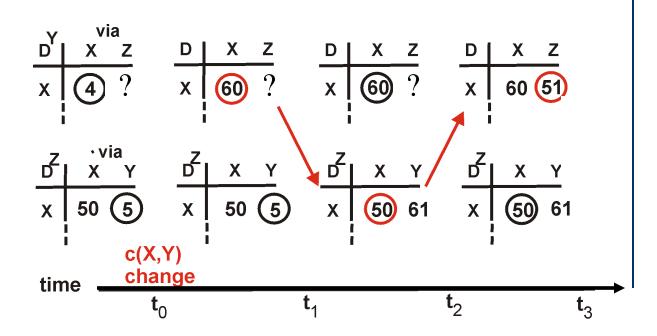



#### Link cost changes:

- Good news travels fast
- Bad news travels slow -"count to infinity" problem!

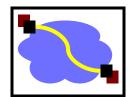






## Distance Vector: Split Horizon

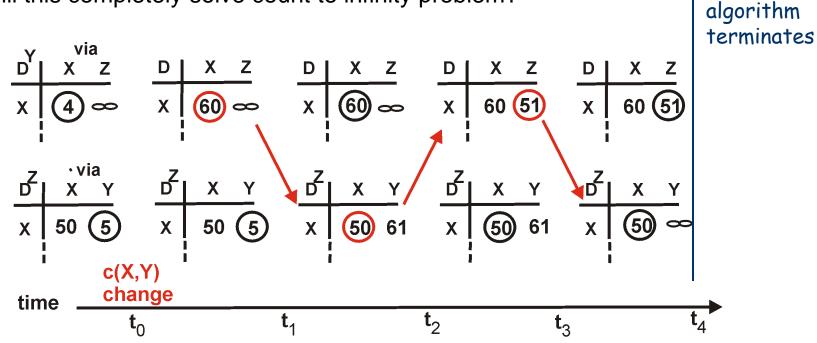


If Z routes through Y to get to X:

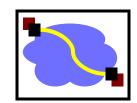

Z does not advertise its route to X back to Y



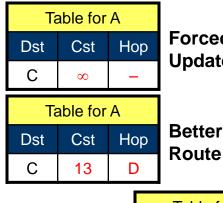



algorithm terminates

#### Distance Vector: Poison Reverse



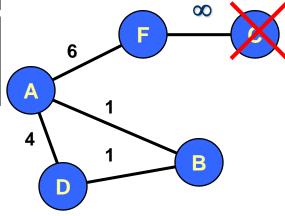

#### If Z routes through Y to get to X:


- Z tells Y its (Z's) distance to X is infinite (so Y won't route to X via Z)
- 50 Z
- Immediate notification of unreachability, rather than split horizon timeout waiting for advertisement
- Will this completely solve count to infinity problem?



#### Poison Reverse Failures




| Т   | able for | Α   | Ta  | able for | В   | Ta  | able for | D   | Ta  | able for | F   |
|-----|----------|-----|-----|----------|-----|-----|----------|-----|-----|----------|-----|
| Dst | Cst      | Нор |
| С   | 7        | F   | С   | 8        | Α   | С   | 9        | В   | С   | 1        | С   |



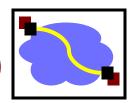
Forced For Update Update

Forced Update Dst C:

| Table for F |     |     |  |  |  |
|-------------|-----|-----|--|--|--|
| Dst         | Cst | Нор |  |  |  |
| С           | 8   | _   |  |  |  |

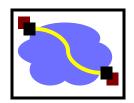


> Forced Update


| Table for D |     |   |  |  |  |
|-------------|-----|---|--|--|--|
| Dst         | Нор |   |  |  |  |
| С           | 15  | В |  |  |  |

| Table for A |     |     |  |  |
|-------------|-----|-----|--|--|
| Dst         | Cst | Нор |  |  |
| С           | 19  | D   |  |  |

Forced Update


- Iterations don't converge
- "Count to infinity"
- Solution
  - Make "infinity" smaller
  - What is upper bound on maximum path length?

# Routing Information Protocol (RIP)



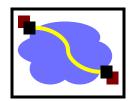
- Earliest IP routing protocol (1982 BSD)
  - Current standard is version 2 (RFC 1723)
- Features
  - Every link has cost 1
  - "Infinity" = 16
    - Limits to networks where everything reachable within 15 hops
- Sending Updates
  - Every router listens for updates on UDP port 520
  - RIP message can contain entries for up to 25 table entries

#### RIP Updates



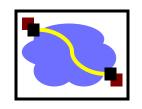
#### Initial

- When router first starts, asks for copy of table for every neighbor
- Uses it to iteratively generate own table


#### Periodic

- Every 30 seconds, router sends copy of its table to each neighbor
- Neighbors use it to iteratively update their tables

#### Triggered

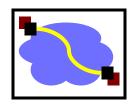

- When every entry changes, send copy of entry to neighbors
  - Except for one causing update (split horizon rule)
- Neighbors use it to update their tables

## RIP Staleness / Oscillation Control



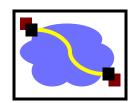
- Small Infinity
  - Count to infinity doesnt take very long
- Route Timer
  - Every route has timeout limit of 180 seconds
    - Reached when haven't received update from next hop for 6 periods
  - If not updated, set to infinity
  - Soft-state refresh → important concept!
- Behavior
  - When router or link fails, can take minutes to stabilize

## **Outline**

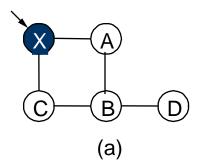


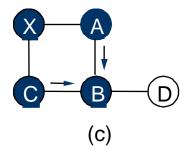

Distance Vector

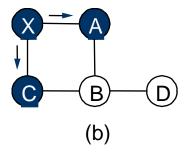
Link State

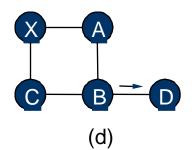

Routing Hierarchy

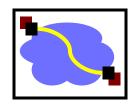
## Link State Protocol Concept





- Every node gets complete copy of graph
  - Every node "floods" network with data about its outgoing links
- Every node computes routes to every other node
  - Using single-source, shortest-path algorithm
- Process performed whenever needed
  - When connections die / reappear

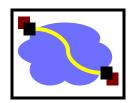

## Sending Link States by Flooding

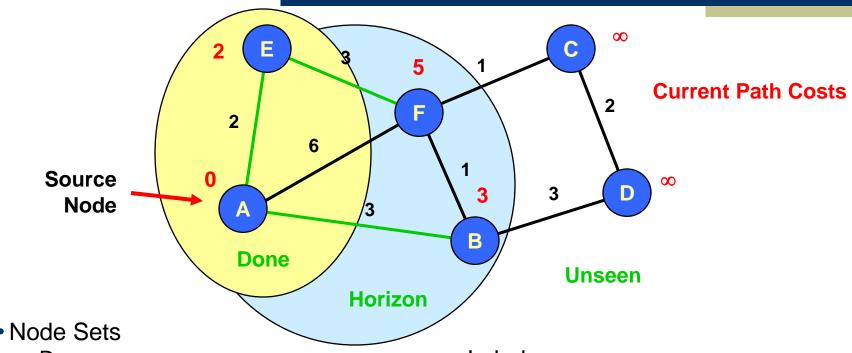




- X Wants to Send Information
  - Sends on all outgoing links
- When Node Y Receives
   Information from Z
  - Send on all links other than Z





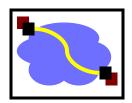


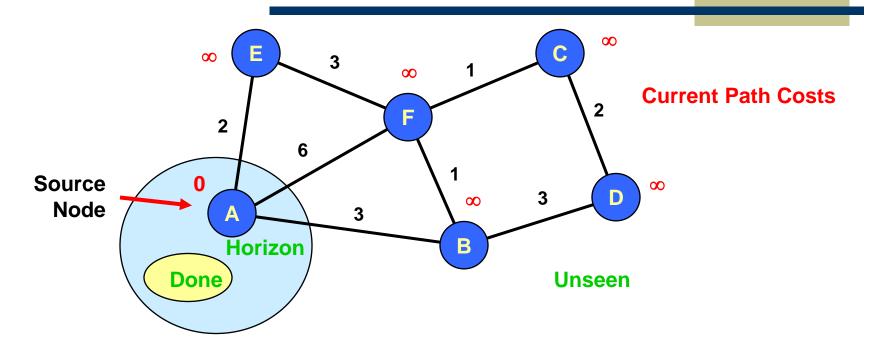






- Given
  - Graph with source node s and edge costs c(u,v)
  - Determine least cost path from s to every node v
- Shortest Path First Algorithm
  - Traverse graph in order of least cost from source

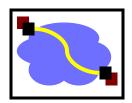
## Dijkstra's Algorithm: Concept

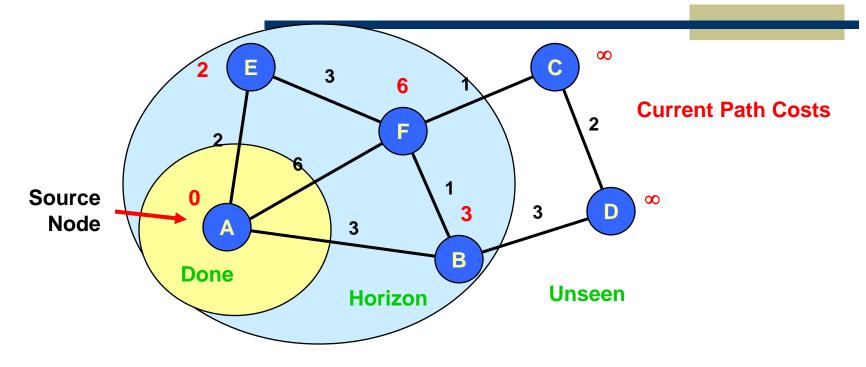


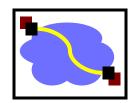

- Done
  - Already have least cost path to it
- Horizon:
  - Reachable in 1 hop from node in Done
- Unseen:
  - Cannot reach directly from node in Done

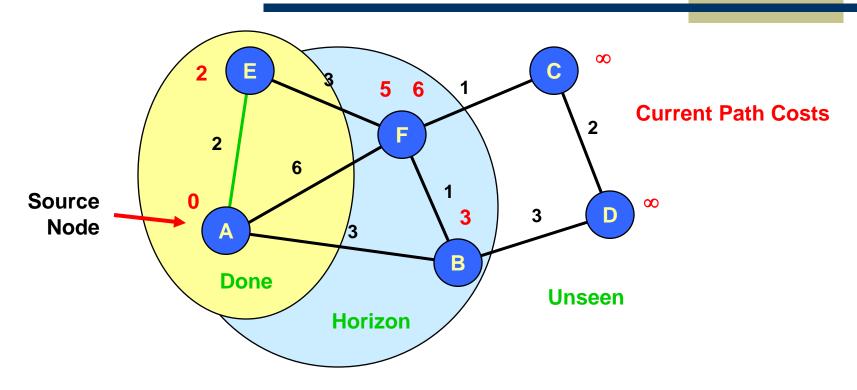
- Label
  - d(v) = path cost from s to v
- Path
  - Keep track of last link in path


# Dijkstra's Algorithm: Initially

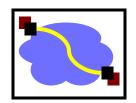


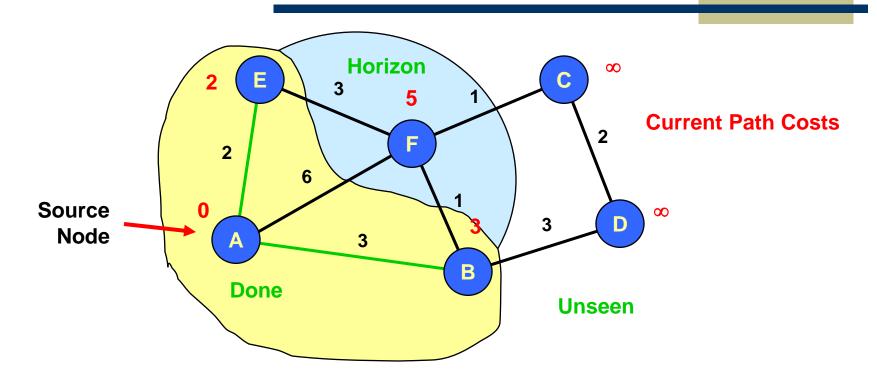




- No nodes done
- Source in horizon

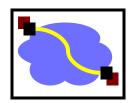

# Dijkstra's Algorithm: Initially

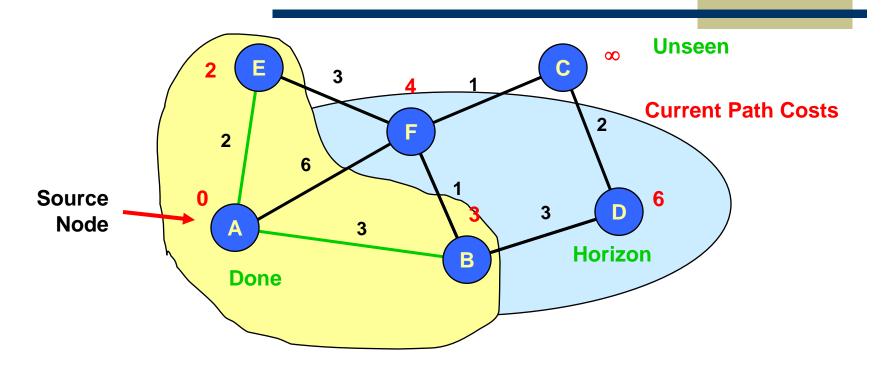




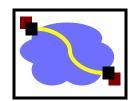


- d(v) to node A shown in red
  - Only consider links from done nodes

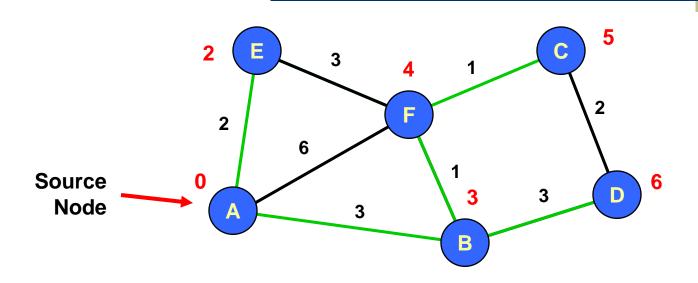






- Select node v in horizon with minimum d(v)
- Add link used to add node to shortest path tree
- Update d(v) information

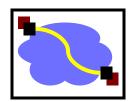






Repeat...

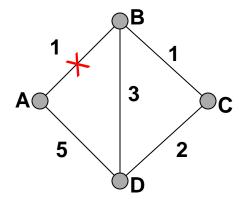





- Update d(v) values
  - Can cause addition of new nodes to horizon

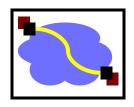





Final tree shown in green

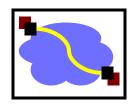
#### Link State Characteristics




- With consistent LSDBs\*, all nodes compute consistent loop-free paths
- Can still have transient loops

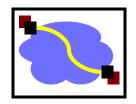
\*Link State Data Base




Packet from C→A
may loop around BDC
if B knows about failure
and C & D do not

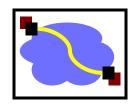
## **OSPF** Routing Protocol




- Open
  - Open standard created by IETF
- Shortest-path first
  - Another name for Dijkstra's algorithm
- More prevalent than RIP

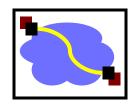
## **OSPF** Reliable Flooding




- Transmit link state advertisements
  - Originating router
    - Typically, minimum IP address for router
  - Link ID
    - ID of router at other end of link
  - Metric
    - Cost of link
  - Link-state age
    - Incremented each second
    - Packet expires when reaches 3600
  - Sequence number
    - Incremented each time sending new link information

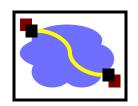
## **OSPF Flooding Operation**




- Node X Receives LSA from Node Y
  - With Sequence Number q
  - Looks for entry with same origin/link ID
- Cases
  - No entry present
    - Add entry, propagate to all neighbors other than Y
  - Entry present with sequence number p < q</li>
    - Update entry, propagate to all neighbors other than Y
  - Entry present with sequence number p > q
    - Send entry back to Y
    - To tell Y that it has out-of-date information
  - Entry present with sequence number p = q
    - Ignore it

## Flooding Issues




- When should it be performed
  - Periodically
  - When status of link changes
    - Detected by connected node
- What happens when router goes down & back up
  - Sequence number reset to 0
    - Other routers may have entries with higher sequence numbers
  - Router will send out LSAs with number 0
  - Will get back LSAs with last valid sequence number p
  - Router sets sequence number to p+1 & resends

### Adoption of OSPF



- RIP viewed as outmoded
  - Good when networks small and routers had limited memory & computational power
- OSPF Advantages
  - Fast convergence when configuration changes

# Comparison of LS and DV Algorithms

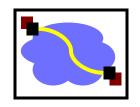


#### Message complexity

- <u>LS:</u> with n nodes, E links, O(nE) messages
- <u>DV:</u> exchange between neighbors only

#### Speed of Convergence

- <u>LS:</u> Relatively fast
  - Complex computation, but can forward before computation
  - may have transient loops
- <u>DV</u>: convergence time varies
  - may have routing loops
  - count-to-infinity problem
  - faster with triggered updates

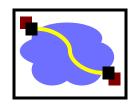

#### Space requirements:

- LS maintains entire topology
- DV maintains only neighbor state

# Robustness: router malfunctions

- <u>LS</u>: Node can advertise incorrect link cost
  - Each node computes its own table
- DV: Node can advertise incorrect path cost
  - Each node's table used by others (error propagates)

#### **Outline**




Distance Vector

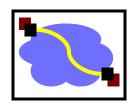
Link State

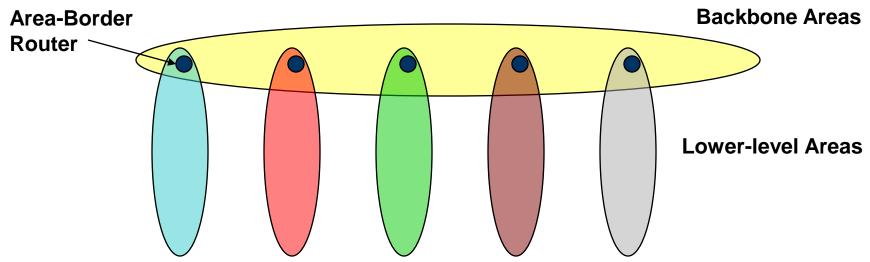
Routing Hierarchy


## Routing Hierarchies



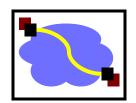
- Flat routing doesn't scale
  - Storage 

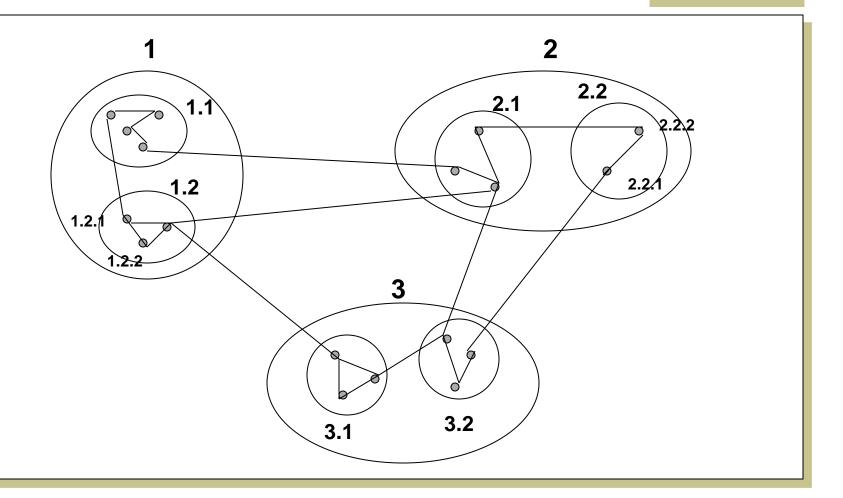

    Each node cannot be expected to store routes to every destination (or destination network)
  - Convergence times increase
  - Communication → Total message count increases
- Key observation
  - Need less information with increasing distance to destination
  - Need lower diameters networks
- Solution: area hierarchy


#### **Areas**

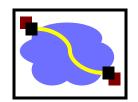


- Divide network into areas
  - Areas can have nested sub-areas
- Hierarchically address nodes in a network
  - Sequentially number top-level areas
  - Sub-areas of area are labeled relative to that area
  - Nodes are numbered relative to the smallest containing area

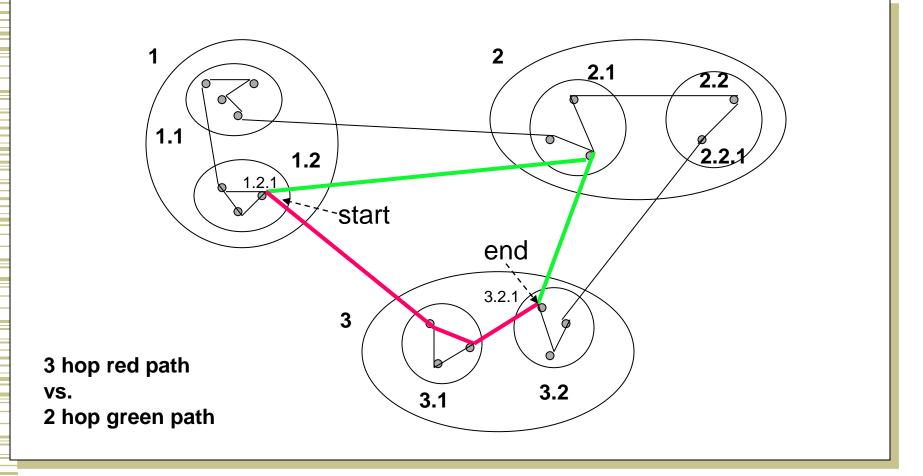

## Routing Hierarchy



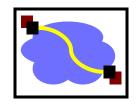




- Partition Network into "Areas"
  - Within area
    - Each node has routes to every other node
  - Outside area
    - Each node has routes for other top-level areas only
    - Inter-area packets are routed to nearest appropriate border router
- Constraint: no path between two sub-areas of an area can exit that area

## Area Hierarchy Addressing







## Path Sub-optimality



Can result in sub-optimal paths



#### Next Lecture: BGP



How to connect together different ISPs