Lecture 11: Intra-Domain Routing

RIP (Routing Information Protocol) & OSPF (Open Shortest Path First)
IP Forwarding

• The Story So Far…
 • IP addresses are structured to reflect Internet structure
 • IP packet headers carry these addresses
 • When Packet Arrives at Router
 • Examine header to determine intended destination
 • Look up in table to determine next hop in path
 • Send packet out appropriate port

• This/next lecture
 • How to generate the forwarding table
Graph Model

- Represent each router as node
- Direct link between routers represented by edge
 - Symmetric links \(\Rightarrow \) undirected graph
- Edge “cost” \(c(x,y) \) denotes measure of difficulty of using link
 - delay, $ cost, or congestion level
- Task
 - Determine least cost path from every node to every other node
 - Path cost \(d(x,y) = \text{sum of link costs} \)
Routes from Node A

- Properties
 - Some set of shortest paths forms tree
 - Shortest path spanning tree
 - Solution not unique
 - E.g., A-E-F-C-D also has cost 7

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>E</td>
</tr>
</tbody>
</table>
Ways to Compute Shortest Paths

- **Centralized**
 - Collect graph structure in one place
 - Use standard graph algorithm
 - Disseminate routing tables

- **Link-state**
 - Every node collects complete graph structure
 - Each computes shortest paths from it
 - Each generates own routing table

- **Distance-vector**
 - No one has copy of graph
 - Nodes construct their own tables iteratively
 - Each sends information about its table to neighbors
Outline

- Distance Vector
- Link State
- Routing Hierarchy
Distance-Vector Method

- Idea
 - At any time, have cost/next hop of best known path to destination
 - Use cost ∞ when no path known

- Initially
 - Only have entries for directly connected nodes

<table>
<thead>
<tr>
<th>Dest</th>
<th>Cost</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>–</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>–</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
<td>F</td>
</tr>
</tbody>
</table>
Distance-Vector Update

• Update\((x,y,z)\)
 \[d \leftarrow c(x,z) + d(z,y) \] # Cost of path from \(x\) to \(y\) with first hop \(z\)
 if \(d < d(x,y) \)
 # Found better path
 return \(d, z\) # Updated cost / next hop
 else
 return \(d(x,y), \text{nexthop}(x,y)\) # Existing cost / next hop
Algorithm

• Bellman-Ford algorithm

• Repeat

 For every node x

 For every neighbor z

 For every destination y

 d(x,y) ← Update(x,y,z)

• Until converge
Optimum 1-hop paths

<table>
<thead>
<tr>
<th>Table for A</th>
<th>Table for B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dst</td>
<td>Cst</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
</tr>
<tr>
<td>F</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table for C</th>
<th>Table for D</th>
<th>Table for E</th>
<th>Table for F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dst</td>
<td>Cst</td>
<td>Hop</td>
<td>Dst</td>
</tr>
<tr>
<td>A</td>
<td>∞</td>
<td>–</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>∞</td>
<td>–</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>–</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Iteration #1

Optimum 2-hop paths

Table for A
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>E</td>
</tr>
</tbody>
</table>

Table for B
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for C
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for D
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>∞</td>
<td>–</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

Table for E
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>∞</td>
<td>–</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for F
<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>

![Optimum 2-hop paths diagram](attachment:image.jpg)
Iteration #2

Optimum 3-hop paths

Table for A

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>E</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>5</td>
<td>E</td>
</tr>
</tbody>
</table>

Table for B

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for C

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6</td>
<td>F</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for D

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>7</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>5</td>
<td>C</td>
</tr>
<tr>
<td>F</td>
<td>2</td>
<td>C</td>
</tr>
</tbody>
</table>

Table for E

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>F</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>F</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for F

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>C</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>E</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>F</td>
</tr>
</tbody>
</table>
Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates distance table
- If cost change in least cost path, notify neighbors

“good news travels fast”

c(X, Y) change

time

t₀ t₁ t₂
Distance Vector: Link Cost Changes

Link cost changes:
- Good news travels fast
- Bad news travels slow - “count to infinity” problem!

![Diagram showing link cost changes](image-url)
Distance Vector: Split Horizon

If Z routes through Y to get to X:
- Z does not advertise its route to X back to Y

![Diagram showing the split horizon algorithm](image)
Distance Vector: Poison Reverse

If Z routes through Y to get to X:

- Z tells Y its (Z’s) distance to X is infinite (so Y won’t route to X via Z)
- Immediate notification of unreachability, rather than split horizon timeout waiting for advertisement
- Will this completely solve count to infinity problem?

\[D^Z \]

\[
\begin{array}{c|ccc}
D & X & Z \\
X & 4 & \infty \\
Y & & \\
\end{array}
\]

\[
\begin{array}{c|ccc}
D & X & Z \\
X & 60 & \infty \\
Y & & \\
\end{array}
\]

\[
\begin{array}{c|ccc}
D & X & Z \\
X & 60 & 51 \\
Y & & \\
\end{array}
\]

\[
\begin{array}{c|ccc}
D & X & Z \\
X & 50 & 61 \\
Y & & \\
\end{array}
\]

\[
\begin{array}{c|ccc}
D & X & Z \\
X & 50 & \infty \\
Y & & \\
\end{array}
\]

\[c(X,Y) \text{ change} \]

\[t_0 \quad t_1 \quad t_2 \quad t_3 \quad t_4 \]
Poison Reverse Failures

- Iterations don’t converge
- “Count to infinity”
- Solution
 - Make “infinity” smaller
 - What is upper bound on maximum path length?

Table for A

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>7</td>
<td>F</td>
</tr>
</tbody>
</table>

Table for B

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>8</td>
<td>A</td>
</tr>
</tbody>
</table>

Table for D

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>9</td>
<td>B</td>
</tr>
</tbody>
</table>

Table for F

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1</td>
<td>C</td>
</tr>
</tbody>
</table>

Table for A

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>∞</td>
<td>–</td>
</tr>
</tbody>
</table>

Table for B

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>14</td>
<td>A</td>
</tr>
</tbody>
</table>

Table for D

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>15</td>
<td>B</td>
</tr>
</tbody>
</table>

Table for F

<table>
<thead>
<tr>
<th>Dst</th>
<th>Cst</th>
<th>Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>∞</td>
<td>–</td>
</tr>
</tbody>
</table>

Better Route

Forced Update

Forced Update
Routing Information Protocol (RIP)

- Earliest IP routing protocol (1982 BSD)
 - Current standard is version 2 (RFC 1723)
- Features
 - Every link has cost 1
 - “Infinity” = 16
 - Limits to networks where everything reachable within 15 hops
- Sending Updates
 - Every router listens for updates on UDP port 520
 - RIP message can contain entries for up to 25 table entries
RIP Updates

- **Initial**
 - When router first starts, asks for copy of table for every neighbor
 - Uses it to iteratively generate own table

- **Periodic**
 - Every 30 seconds, router sends copy of its table to each neighbor
 - Neighbors use it to iteratively update their tables

- **Triggered**
 - When every entry changes, send copy of entry to neighbors
 - Except for one causing update (split horizon rule)
 - Neighbors use it to update their tables
RIP Staleness / Oscillation Control

- **Small Infinity**
 - Count to infinity doesn’t take very long

- **Route Timer**
 - Every route has timeout limit of 180 seconds
 - Reached when haven’t received update from next hop for 6 periods
 - If not updated, set to infinity
 - Soft-state refresh → important concept!

- **Behavior**
 - When router or link fails, can take minutes to stabilize
Outline

- Distance Vector
- Link State
- Routing Hierarchy
Link State Protocol Concept

- Every node gets complete copy of graph
 - Every node “floods” network with data about its outgoing links
- Every node computes routes to every other node
 - Using single-source, shortest-path algorithm
- Process performed whenever needed
 - When connections die / reappear
Sending Link States by Flooding

• X Wants to Send Information
 • Sends on all outgoing links
• When Node Y Receives Information from Z
 • Send on all links other than Z
Dijkstra’s Algorithm

• **Given**
 - Graph with source node s and edge costs $c(u,v)$
 - Determine least cost path from s to every node v

• **Shortest Path First Algorithm**
 - Traverse graph in order of least cost from source
Dijkstra’s Algorithm: Concept

- Node Sets
 - **Done**: Already have least cost path to it
 - **Horizon**: Reachable in 1 hop from node in Done
 - **Unseen**: Cannot reach directly from node in Done

- Label
 - \(d(v) = \) path cost from \(s \) to \(v \)

- Path
 - Keep track of last link in path

Diagram:

- **Source Node**: A
- **Done**: E, B
- **Horizon**: F, C, D
- **Unseen**: E, C, D

Current Path Costs

- A
 - 0
- B
 - 3
- C
 - \(\infty \)
- D
 - \(\infty \)
- E
 - 2
- F
 - 3
- C
 - 1
- D
 - 2
Dijkstra’s Algorithm: Initially

- No nodes done
- Source in horizon
Dijkstra’s Algorithm: Initially

- \(d(v) \) to node A shown in red
- Only consider links from done nodes

Source Node

Done

Horizon

Unseen

Current Path Costs

2

3

6

1

2

\(\infty \)

3

3

\(\infty \)

0

2

3

1
Dijkstra’s Algorithm

- Select node \(v \) in horizon with minimum \(d(v) \)
- Add link used to add node to shortest path tree
- Update \(d(v) \) information
Dijkstra’s Algorithm

- Repeat…
Dijkstra’s Algorithm

- Update \(d(v) \) values
 - Can cause addition of new nodes to horizon
Dijkstra’s Algorithm

- Final tree shown in green
Link State Characteristics

- With consistent LSDBs*, all nodes compute consistent loop-free paths
- Can still have transient loops

*Link State Data Base

Packet from C→A may loop around BDC if B knows about failure and C & D do not
OSPF Routing Protocol

- Open
 - Open standard created by IETF
- Shortest-path first
 - Another name for Dijkstra’s algorithm
- More prevalent than RIP
OSPF Reliable Flooding

• Transmit link state advertisements
 • Originating router
 • Typically, minimum IP address for router
 • Link ID
 • ID of router at other end of link
 • Metric
 • Cost of link
 • Link-state age
 • Incremented each second
 • Packet expires when reaches 3600
 • Sequence number
 • Incremented each time sending new link information
OSPF Flooding Operation

- Node X Receives LSA from Node Y
 - With Sequence Number q
 - Looks for entry with same origin/link ID

- Cases
 - No entry present
 - Add entry, propagate to all neighbors other than Y
 - Entry present with sequence number p < q
 - Update entry, propagate to all neighbors other than Y
 - Entry present with sequence number p > q
 - Send entry back to Y
 - To tell Y that it has out-of-date information
 - Entry present with sequence number p = q
 - Ignore it
Flooding Issues

- When should it be performed
 - Periodically
 - When status of link changes
 - Detected by connected node
- What happens when router goes down & back up
 - Sequence number reset to 0
 - Other routers may have entries with higher sequence numbers
 - Router will send out LSAs with number 0
 - Will get back LSAs with last valid sequence number p
 - Router sets sequence number to $p+1$ & resends
Adoption of OSPF

• RIP viewed as outmoded
 • Good when networks small and routers had limited memory & computational power

• OSPF Advantages
 • Fast convergence when configuration changes
Comparison of LS and DV Algorithms

Message complexity
- **LS**: with n nodes, E links, $O(nE)$ messages
- **DV**: exchange between neighbors only

Speed of Convergence
- **LS**: Relatively fast
 - Complex computation, but can forward before computation
 - may have transient loops
- **DV**: convergence time varies
 - may have routing loops
 - count-to-infinity problem
 - faster with triggered updates

Space requirements:
- LS maintains entire topology
- DV maintains only neighbor state

Robustness: router malfunctions
- **LS**: Node can advertise incorrect link cost
 - Each node computes its own table
- **DV**: Node can advertise incorrect path cost
 - Each node’s table used by others (error propagates)
Outline

- Distance Vector
- Link State
- Routing Hierarchy
Routing Hierarchies

- Flat routing doesn’t scale
 - Storage → Each node cannot be expected to store routes to every destination (or destination network)
 - Convergence times increase
 - Communication → Total message count increases

- Key observation
 - Need less information with increasing distance to destination
 - Need lower diameters networks

- Solution: area hierarchy
Areas

- Divide network into areas
 - Areas can have nested sub-areas
- Hierarchically address nodes in a network
 - Sequentially number top-level areas
 - Sub-areas of area are labeled relative to that area
 - Nodes are numbered relative to the smallest containing area
Routing Hierarchy

- Partition Network into “Areas”
 - Within area
 - Each node has routes to every other node
 - Outside area
 - Each node has routes for other top-level areas only
 - Inter-area packets are routed to nearest appropriate border router
- Constraint: no path between two sub-areas of an area can exit that area
Area Hierarchy Addressing
Path Sub-optimality

- Can result in sub-optimal paths

3 hop red path vs. 2 hop green path
Next Lecture: BGP

- How to connect together different ISPs