Lab 1: Distributed Password Cracker

Due: 11:59 pm, February 10, 2011

1 Introduction

For a few decades, UNIX-based systems (and now OS X and windows) all store only the hash of a
user’s password. When you type your password to login, the system hashes the password you type
and compares it against the stored hash value. In this way, an attacker who takes over a computer
and steals its /etc/passwd file doesn’t immediately learn the cleartext passwords belonging to the
system’s users. Recall that a cryptographic hash function is a hopefully one-way transformation
from an input string to an output string, where it’s impossible to go backwards from the output to
an input that will generate the output:

Hash(cleartext) — hashvalue

This system is a great start, but it’s not unbreakable. The original, and still somewhat commonly
used, way of hashing passwords uses a hash function called crypt (). When it was initially designed
in 1976, crypt () could only hash four passwords per second. With today’s (drastically) faster
computers, incredibly optimized password cracking code can attempt over three million hashes per
second on a single core. While the hash function is still one-way, you can find a lot of passwords
using a brute-force approach: generate a string, hash it, and see if the result matches the hash of
the password you’re trying to find.

Still, three million per second isn’t all that fast. Using just the upper, lowercase, and numeric
characters, there are 628 possible eight character passwords. That would take 842 days to crack
using a single core. But why stop there? There must be a few hundred idle cores sitting around
campus...

Many hands make light work.
—John Heywood

In this lab you will create a distributed password cracker. You will use the concepts of concur-
rency, threading, and client/server communication protocols to solve this task.

1.1 Concepts

The goal of this lab is to create a distributed system that can run across the entire Internet.
Password cracking is an “embarassingly parallel” application—it consists of a set of expensive
operations on small chunks of data, and there’s no data that needs to be shared between different
password cracking nodes as they crack. They just receive a work unit allocation, try all of the
passwords in that unit, and tell the server if any of them was a match.

The challenges in this assignment are twofold. First, the system is designed to run on the
wide-area network. The Internet is not a nice place: it can drop, multilate, or delay your packets.
Your remote worker nodes may become unavailable temporarily or permanently. You’ll have to






























