
Project 2: Part 4: MKDIR, REMOVE and Locking

Due: 11:59PM Wednesday, March 24, 2010

1 Introduction

In this part, you will continue to add functionality to your file server. You will:

- Add handlers for the MKDIR and REMOVE FUSE operations.

- Add simple locking. Locking is required to ensure that concurrent modifications to the same
file or directory occur one at a time.

2 Getting started

As in part 3, merge the code in the branch part 4 with your trunk. Make sure you choose to
keep the new Makefile.

As in Part 3, begin by uncommenting the relevant lines at the bottom of fuse.cc::main (such
as fuseserver oper.unlink = fuseserver unlink;) so that you point FUSE to call the appropriate
functions that you will fill in in this part.

Ensure the code from Part 3 passes all tests for Part 1, 2, and 3 before starting in on this part.

Part 4 has two phases:

3 Phase 1: MKDIR, REMOVE

3.1 Your Job

Your job in phase 1 is to handle the MKDIR and REMOVE FUSE operations. This should be
a straightforward extension of your Part 3 code. Make sure that when you choose the inumber
for a new directory created with MKDIR, that inumber must have its most significant bit set to 0
(as explained in Part 2 of the Project, unless you changed the way YFS tells files and directories
apart). When you’re done with phase 1, the following should work:

% ./start.sh
% mkdir yfs1/newdir
% echo hi > yfs1/newdir/newfile

1



% ls yfs1/newdir/newfile
yfs1/newdir/newfile
% rm yfs1/newdir/newfile
% ls yfs1/newdir
% ./stop.sh

If your implementation passes the test-lab-4-a.pl script, you are done with phase 1. The test script
creates a directory, creates and deletes lots of files in the directory, and checks file and directory
mtimes and ctimes. Note that this is the first test that explicitly checks the correctness of these
time attributes. A create should change both the parent directory’s mtime and ctime. Here is a
successful run of the tester:

% ./start.sh
% ./test-lab-4-a.pl ./yfs1
mkdir ./yfs1/d3319
create x-0
delete x-0
create x-1
checkmtime x-1
...
delete x-33
dircheck
Passed all tests!
% ./stop.sh

4 Phase 2: Locking

Next, you are going to ensure the consistency of your file system when many clients simultaneously
perform file system operations on the same file system image via different yfs client processes.
Your current implementation does not handle concurrent operations correctly. For example, your
yfs client’s create method probably reads the directory’s contents from the extent server, makes
some changes or additions, and stores the new contents at the extent server. Suppose two clients
issue simultaneous CREATEs for different file names in the same directory via different yfs client
processes. Both yfs client processes might fetch the old dir contents at the same time and each
inserts the newly created file for its client and writes back the new dir contents. As a result, only
one of the file would be present in the dir in the end. The correct answer, however, is for both
files to exist. The CREATE example is just one of the “race conditions”. Many others exist: e.g.
concurrent CREATE and UNLINK, concurrent MKDIR and LOOKUP, etc.

To fix the race conditions, the yfs client must use locks to ensure that the two operations that
access the same file or directory happen one at a time. For example, a yfs client would acquire a
lock before starting the CREATE, and only release the lock after finishing the write of the new
information back to the extent server. If there are concurrent operations, the locks force one of
the two operations to delay until the other one has completed. Because each yfs client can run as
a separate process on a different machine, all yfs clients have to acquire locks from the same lock
server. Now you can see why the lock server implementation from Part 1 comes in handy!

2



4.1 Your Job

Your job is to implement locking for yfs client to ensure that concurrent operations from different
yfs clients proceed correctly. The testers for this part of the lab are test-lab-4-b and test-lab-4-c
(The source files are test-lab-4-b.c and test-lab-4-c.c). The testers take two directories as arguments
and issue concurrent operations in the two directories and check that the results are consistent with
the operations executing in some serial order. Here’s a successful execution of the testers:

% ./start.sh
% ./test-lab-4-b ./yfs1 ./yfs2
Create then read: OK
Unlink: OK
Append: OK
Readdir: OK
Many sequential creates: OK
Write 20000 bytes: OK
Concurrent creates: OK
Concurrent creates of the same file: OK
Concurrent create/delete: OK
Concurrent creates, same file, same server: OK
test-lab-4-b: Passed all tests.
% ./stop.sh
%
% ./start.sh
% ./test-lab-4-c ./yfs1 ./yfs2
Create/delete in separate directories: tests completed OK
% ./stop.sh

If you try this before you add locking, it will fail at “Concurrent creates” test in test-lab-4-b.

After you are done with phase 2, you should also test with test-lab-4-a.pl to make sure you didn’t
break anything. You might also test with test-lab-4-b with the same directory for both arguments,
to make sure you handle concurrent operations correctly with only one server before you go on to
test concurrent operations in two servers.

4.2 Detailed Guidance

- What to lock? You must choose what the locks refer to. At one extreme you could have a
single lock for the whole file system, so that operations never proceed in parallel. At the other
extreme you could lock each entry in a directory, or each field in the attributes structure.
Neither of these is a good idea! A single global lock prevents concurrency that would have been
okay, for example CREATEs in different directories. Fine-grained locks have high overhead
and make deadlock likely, since you often need to hold more than one fine-grained lock.

Your best bet is to associate one lock with each file handle. Use the file or directory’s inumber
as the name of the lock (i.e. pass the inumber to acquire and release). The convention
should be that any yfs client operation should acquire the lock on the file or directory it uses,

3



perform the operation, finish updating the extent server (if the operation has side-effects),
and then release the lock on the inumber. You must be careful about releasing the locks in
all circumstances upon return from yfs client operation.

You’ll use your lock server from Part 1. Our original template for the yfs client constructor
that we gave you in Part 2 included the destination address of a lock server, so it should be
very easy to add a lock client object to the yfs client and simply call its acquire and release
methods.

This is also the first lab that writes arbitrary data to the file, rather than null-terminated
C-style strings. If you used the standard std::string constructor in fuse.cc to create a string
to pass to your yfs client, (i.e., std::string(buf)), you will get odd errors when there are
characters equal to the termination character in the buffer. Instead, you should use a different
constructor that allows for char buffers of arbitrary data: std::string(buf, size).

5 Handin

Please submit all the files necessary for running Part 4, including the Makefile to /tags/part4.

6 C++ Tutorials and Resources

- C++ Tutorial
http://www.cplusplus.com/doc/tutorial/

- C++ Reference
http://www.cppreference.com/wiki/start

4


