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Project Objectives  

This project has three goals: 

1. To develop, by doing, a clear understating on how to parallelize an algorithm for distributed processing 

using OpenMPI for communication.   

2. To gain a better understanding of the effects of scale on the performance of distributed processing by 

conducting and analyzing scalability studies on various degrees of parallelism and data set sizes.  

3. To obtain exposure to, and an appreciation for, a common real-world clustering problem , because 

cluster analysis represents an important class of problem  in various domains including, but not limited 

to, data mining and statistical data analysis.  

 

Cluster Analysis  
 
Cluster analysis or clustering is the task of assigning a set of objects into groups (called clusters) so that the 
degree of similarity can be strong between members of the same cluster and weak between members of 
different clusters. In summary, clustering has to define some notion of “similarity” among objects. The objective 
is to maximize intra-cluster similarity and minimize inter-cluster similarity. In this project we will apply K-Means 
clustering to two different applications, data points in a 2D plane and DNA strands in biology.  
Clustering problems arise in many different applications such as visualization (e.g., visualizing the stock market 

data to give individuals/institutions useful information about the market behavior for investment decisions), 

data mining and statistical data analysis including machine learning, pattern recognition, image analysis, 

information retrieval, and bioinformatics.  

Among clustering formulations that are based on minimizing a formal objective function, perhaps the most 

widely used and studied one is K-Means algorithm. Simply put, K-Means is an iterative algorithm that attempts 

to find K similar groups in a given data set via minimizing a mean squared distance function. Initial guesses of K 

means (m1, m2, …, mK) is firstly made (see Fig. 1(a)). These estimated means are then used to classify the data 

set objects into K clusters. Afterwards, each mean is recomputed so as to reflect the true mean of its constituent 

objects (see Fig. 1(b)). The algorithm keeps iterating until the recomputed means (almost) stop varying (see Fig. 

1(c)).   

 

 

 



 

Clustering Data Points  

Considering a case of a data set composed of data points in d-dimensional space Rd. In K-Means clustering, we 

specify a set of n data points and an integer k. The problem then is to determine a set of k points in Rd, called 

centroids, so as to minimize the mean squared distance from each data point to its nearest center. In pseudo 

code, it is shown by Alpaydin (Introduction to Machine Learning, page 139) that K-Means essentially follows the 

following procedure:  

Initialize mi to k random x
d, for i = 1, …., k and xd Є X that contains 

each of our d-dimensional data point.  

Repeat  

For all xd in X  

   bid ← 1 if ||xd – mi|| = minj ||x
d – mj||  

   bid ← 0 otherwise  

For all mi, i = 1, …., k  

  M ← sum over bi
dxd/sum over bi

d  

Until mi converge  

 

Explained in plain English, K-Means roughly follows this approach:  

1. We start by deciding how many clusters we would like to form from our data. We call this value k. The 

value of k is generally a small integer, such as 2, 3, 4, or 5, but may be larger. 

 

2. Next we select k points to be the centroids of k clusters which at present have no members. The list of 

centroids can be selected by any method (e.g., randomly from the set of data points). It is usually better 

to pick centroids that are far apart.  

 

3.  We then compute the Euclidean distance (the similarity function with a data set of data points) from 

each data point to each centroid. A data point is assigned to a cluster such that its distance to that 

cluster is the smallest among all other distances.  

 

4.  After associating every data point with one of k clusters, each centroid is recalculated so as to reflect 

the true mean of its constituent data points.  

 

5. Steps 3 and 4 are repeated for a number of times (say μ), essentially until the centroids start varying 

very little.  

The positive integer μ is known as number of K-Means iterations. The precise value of μ can vary depending on 

the initial starting cluster centroids, even on the same data set.  

In this project, you will provide sequential and parallel implementations of the above K-Means algorithm with a 

data set of data points as input and K centroids as output.  



 

Clustering DNA Strands  

Bioinformatics involves the manipulation, searching, and data mining of biological data, and this includes DNA 

sequence data. A strand of DNA consists of a string of molecules called bases, where the possible bases are 

adenine (A), guanine (G), cytosine (C), and thymine (T). We can express a strand of DNA as a string over the 

finite set {A, C, G, T}. String searching or matching algorithms, which find an occurrence of a sequence of letters 

inside a larger sequence of letters, or simply match two sequences of letters, is widely used in genetics (e.g., for 

studying various phylogenetic relationships and protein functions). In many of studies, we often want to 

compare the DNA of two (or more) different organisms. One goal of comparing two strands of DNA is to 

determine how “similar” the two strands are, as some measure of how closely related the two organisms are. 

Similarity in such a scenario can be defined as a function F(. , .) of the number bases in a strand subtracted 

from the number of changes required to turn one strand into the other. For example consider the following 

three DNA strands: 

 

The similarity between S1 and S2 is denoted as F(S1, S2) and is equal to 18. On the other hand, F(S1, S3) = 16. 

The K-Means algorithm, described in the previous section, can be applied to DNA strands with this given 

similarity function F(. , .) to compare DNA of two or more different organisms. 

In this project, you will provide sequential and parallel implementations of the K-Means algorithm with a data 

set of DNA strands as input and K centroids as output. 

Implementation Requirements 

You should implement sequential and parallel versions of K-Means with two types of data sets, a data set of 

data points and a data set of DNA strands. For simplicity assume 2D data points such that strands in the DNA 

data set are equal in size, and that strands in the list of centroids are also equal in size to each other and equal in 

size to every strand in the data set\. In addition, you have to write your own data set generator that generates a 

random number P of DNA strands per cluster for k clusters (use any programming language you like). 

Your sequential and MPI-based K-Means implementations should be tested and run on a data set of 2D data 

points, generated by the given data set generator, and on a data set of DNA strands, generated by your DNA 

strands data generator. 



 

Experimentation and Analysis 

Please evaluate the performance, specifically total time across all processors and start-to-finish time for the 

system as a whole, of your MPI-based solution as you vary the number of processes with a fixed data set of 2D 

data points. Specifically, consider at least 2, 4, 8, and 12 processes. How does the performance scale? Is there a 

sweet spot? A point of diminishing marginal returns? Illustrate your assessment with one or more graphs, if 

possible.  

Deliverables 

1. Your fully tested and debugged code for your data set generator, and your sequential and MPI-based 

solutions.   

2. A report, in .pdf format,  that (i) describes your approach to parallelizing the algorithm, including 

pseudocode, and (ii) the findings from your “Experimentation and Analysis”, as described above.  

 

OpenMPI Cluster 

OpenMPI is installed in all of the Gates cluster machines. In general, these are machines 

ghcXX.ghc.andrew.cmu.edu, where XX ranges from 01, 02, 03, 04, 05, …, 81.  

In order to make use of the cluster,  

(1) first log in, locally or via ssh, to one of the machines. From there, ssh to several other machines and 

ensure that your ~/.ssh/known_hosts file is up-to-date. For OpenMPI to work, you need to be able to 

ssh to the machines you will be using without entering a password.  

 

(2) Copy the list of machines names you have chosen and tested into a text file, one machine name per line. 

You will feed this to OpenMPI to let it know what machines you want to use. There are no specific 

requirements in naming the file.  

 

(3) OpenMPI is installed in /usr/lib64/openmpi. The bin and lib directories within it need to be made part of 

your environment – both locally and remotely. Specifically, the LD_LIBRARY_PATH and PATH 

environment variables need to be set automatically, without human involvement, upon logging in. For 

example, if your login shell is csh, you probably want to add these lines to your .cshrc file: 

 

setenv LD_LIBRARY_PATH /usr/lib64/openmpi/lib 

setenv PATH ${PATH}:/usr/lib64/openmpi/bin  

Resources 

Check the resources link on the Web for links to the generator, tutorials, etc.  


