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Multiscale Contrast Enhancement for Radiographies:
Laplacian Pyramid Versus Fast Wavelet Transform

Sabine Dippel*, Martin Stahl, Rafael Wiemker, and Thomas Blaffert

Abstract—Contrast enhancement of radiographies based multiscale decomposition of the signal (for a review of wavelet

on a multiscale decomposition of the images recently has applications in biomedical signal processing in general, see [8]).
proven to be a far more versaple and efﬁcnent mgt_hod than onl ithin the last d d ltiscal thods h b
regular unsharp-masking techniques, while containing these nly within the last decade, multiscale methods have been

as a subset. In this paper, we compare the performance of two applied to contrast enhancement of medical images. Two types
multiscale-methods, namely the Laplacian Pyramid and the fast of multiscale methods have been used in this context: the
wavelet transform (FWT). We find that enhancement based on Laplacian Pyramid [9], [10] and wavelet methods [12]-[15].

the FWT suffers from one serious drawback—the introduction of
visible artifacts when large structures are enhanced strongly. By We want to stress here that by contrast enhancement we do not

contrast, the Laplacian Pyramid allows a smooth enhancement Meanimage enhancement via reduction or suppression of noise,
of large structures, such that visible artifacts can be avoided. which we will not discuss here, but rather contrast amplification
Only for the enhancement of very small details, for denoising of the structures of interest. Clearly, contrast amplification
applications or compression of images, the FWT may have some || amplify noise, too, if no additional steps are taken to

advantages over the Laplacian Pyramid. prevent this. However, we will not discuss such methods here,
Index Terms—Fast wavelet transform, image enhancement, pyt instead focus on methods to enhance details at different
mammography, multiscale methods, radiography. scales—be they noise or anatomical structure. For a discussion
of methods to prevent too strong amplification of noise, see
|. INTRODUCTION [10] for the Laplacian Pyramid and [13] for wavelet methods.

eYVhiIe enhancement by means of the Laplacian Pyramid was

N digital radiography, suitable image processing can h . i ; . :
to reconcile some of the problems faced in the display g[f))plled to X-ray images in general [9], [10], wavelet-based

radiographic images. Radiographs often contain at the Samethods were mainly used in the context of mammography

time large contrast variations and important Iow-contraEJ; I-{14], although there are also some isolated applications to

details. Suitable postprocessing can help to meet the conflictirr?agnetlc resonance (MR) and computgd tomqgraphy (C.T) m-
: : . . a@es [12] or chest radiographs [15]. With nonlinear multiscale
requirements of reproducing the low-contrast details withou : . )
clipping the general gray-value range. A standard techniqﬁghance.ment based on .the Lapl.a.man Eyram|d, we obtained
) very satisfactory results in two clinical trials [10]. There are

for the enhancement of small details (i.e., edges) is unshar ;
. ; . . . reasons why one might expect that wavelet-based enhancement
masking [1], where the image is split up into two or three : .
c%uld be even more powerful than the Laplacian Pyramid:

frequency channels. The edge image is then amplified an - .
: . . erfect decomposition due to orthogonality of the wavelet
added again to the corresponding low-pass image. In the case L L : . ) .
. . o ases, direction sensitivity, and high noise-reduction potential.
where the image is split into three frequency channels, a", . —
In this paper, we explore the possibilities of enhancement

contrast equalization can be achieved by additionally applylr\}%_j1 the fast wavelet transform (FWT) for radiographs and

a _dynamllc range compression to the low pass image. Cle.acrzlxmpare them with results from the Laplacian Pyramid, since
this provides no access to structures of intermediate sizés. ; ; !

. . no,comparison of these different multiscale methods has been

Therefore, various multiscale methods have been proposed . ;

Frformed so far. We restrict ourselves to pyramidal methods of

recently, where the 'mage 15 Split up into a larger number §ecomposition, since for radiographs, which are usually quite
frequency channels, which can then be processed separatel}/a.1F1ge (Up to 3 kx 3 k pixels), such methods seem to be most

In medical image processing, multiscale methods have bee . : .
. ; propriate, both for reasons of disc space and computation
used for many purposes, e.g., in the context of segmentation L : L .
ime. Especially if the multiscale processing is to be integrated

registration [3], noise reduction [4], or compression of images . ) - .
[5]-[7]- Mostly, these applications used wavelet methods fortrllnethe regular processing chain of a digital radiography system,
' ' processing times of more than 10 s are usually unacceptable.

, _ _ . We compare the suitability of these methods for enhancement
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Fig. 1. The Laplacian Pyramid with subband remapping.Tite) in the dashed box “enhancement” denote the remapping functions that may be applied to the
bandpass images.

in the breast combined with a very large general gray value vatie previous low-pass image. The sequence of low-pass images
ation between background and tissue. Here, essentially any isrtermed a Gaussian Pyramid, while the sequence of the sub-
hancement of the low-contrast structures is welcomed. Somermaicted (bandpass) imagésigeo, - - - ; Leage (n—2) IS termed a
the results presented in [13], [14] for mammography change thaplacian Pyramid.
image impression significantly. This would probably be unac- For enhancement of images by means of a Laplacian Pyramid
ceptable for general radiographic applications. decomposition, the bandpass images are mapped by a (usually
The outline of the paper is as follows. In Section I, we brieflyonlinear) function. In [9] and [10], nonlinear functions were
present the Laplacian Pyramid and the FWThis includes a used and shown to give good results. Vuylsteke and Schoeters
survey of previous applications of these methods to radiograpf8.used a power law with a linear lower and upper cutoff
In Section lll, we compare the effect of contrast enhancement
in the framework of these different decomposition methods and GM - (%), forl|a| < x.
discuss the influence of their properties on the perception ofra-  r(z) = { 7= (le) for . < |z > M, - (1)
diographic images. A final discussion of the merits and prob- ol ’ - -
! : . : . x elsewhere
lematic points of the different methods follows in Section IV.
Stahlet al.[10] used a power law bounded by linear functions
ll. MULTISCALE DECOMPOSITION ANDENHANCEMENT OF  for very small and very large contrast
IMAGES o\
A. The Laplacian Pyramid Decomposition Scheme r(z) = { G ( B W) to forfr M- o)

, elsewhere
The Laplacian Pyramid was introduced by Burt and Adelson *

in the context of compression of images [16]. It has the atftere,zx.. is a lower cutoff value introduced to avoid too strong
vantage that the image is only expanded to 4/3 of the origmplification of noise and/ is the upper limit for the nonlinear
inal size and that the same (small) filter kernel can be usedhancement? is a constant gain factor. While Vuylsteke and
for all pyramid levels. Fig. 1 schematically shows the algdschoeters [9] used the same remapping parameters in all sub-
rithm. The image is filtered with a small kernel (we use a bbands, Stahét al. [10] introduced a variation of the gaifd in
nomial 5x 5-kernel, which leads to a Laplacian filter for theall subbands, as well as other additional features not shown in
high-pass images). In each filter step, the previous low-pdsig. 1 to adapt the remapping to the image type at hand. These
image (in the first step, this is the original image) is smoothexpecial features include noise robustness and a density-depen-
by the small kernel and sub-sampled by a factor of two to givkent enhancement. For more detail, see [10].
the next low-pass image. This new low-pass image is up-samWith these additional features incorporated in the enhance-
pled again by inserting zeros after each pixel and smoothent algorithm, we conducted an observer-preference study at
once more with the small kernel before it is subtracted frofulda Municipal Hospital (Fulda, Germany). Results obtained
N on a large variety of image types showed that by careful selec-
In the literature, the nomenclature for this is somewhat inconsistent. The
algorithm we present here is sometimes termed FWT, sometimes Mallat al n of the parameters on the different scales improved detail
rithm, and sometimes pyramid algorithm. visibility and improved overall contrast and sharpness could be
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achieved, retaining a balanced image impression while avoidiige projection?;_; f of f onto the approximation spa¢é_)
boosting noise too strongly [10]. A receiver operating charais then given by

teristic study performed on phantoms and chest images with

simulated lesions at the Medical University Hannover (Han- Piaf=Pif+> (fitin) i (6)
nover, Germany) showed a general trend toward better detection keZ

for most lesion types [11] for the multiscale processed imaggsin

again without affecting the image impression in a negative way.

Generally, especially for images showing an overlay of many Pif= Z (fsdjn) bjk- (7
structures, such as chest, pelvis, lateral images of the spine, etc., kCZ

the processing was judged to render all these structures mare .

visibple g Jueg lgrom the orthogonality of the basdsp; ;& € Z} and

{¢;x; 4,k € Z}, a pyramidal algorithm can be derived, where
the approximation of the functioif at resolution leveln at

B. FWT : .
pointn can recursively be calculated by
Wavelets are functions which are generated by the dilation
and translation of a single functiaf am(n) = {f, pmn) = Z Pi—2n {f, Pm—1,n) - (8)
k

Y@ () = |a| 7Y% <¥> . (3) The detail signal (i.e., the edges at lewe) is given by

dm(n) = <f7 "‘/)m,n> = ng—Qn <f7 "‘/)m—l,n> ; (9)
k

(Clearly, this can be generalized for arbitrary dimensions, but
for the sake of clarity, we discuss only the one-dimensional
case here.) In practical applications, particularly for the discretéth g;, = (—1)*h_x11 andhy, = (¢, p—1 ).
wavelet transform, often = 27, j € Z is chosen for the dila- However, there are some drawbacks of orthonormal wavelet
tion. The data points define a natural grid for the values of thmses. It can be shown that there are no nontrivial orthonormal
translation parametér. A wavelet transform witha = 27 is linear phase FIR filters with exact reconstruction (the trivial ex-
termeddyadic wavelet transfornThe so-callednother wavelet ception is the Haar basis wifly = h; = V2 andgg = —g1 =
1 has to satisfy the conditio!f dty(t) = 0. (Actually, the +/2, all otherh,, = g, = 0). Linear phase (which is desir-
condition is one on the Fourier transformf however, for a able, e.g., for the possibility to use reflecting instead of periodic
wavelet with compact support, this is equivalent to the conditidsoundary conditions) can be preserved by relaxing the orthonor-
stated here.) mality requirement and requiring biorthogonality instead [19].
A wavelet transform is now simply the representation of A biorthogonal wavelet basis is simply one where the recon-
function f by a superposition of wavelets. In the discrete casstruction filtersh andg may be different fronk andg, but fulfill
the function can be represented as the reconstruction requirement

F=> conl o @) UESY [ﬁQn_lam(n) n g%_ldm(n)} (10)

n

wherew,,, »(t) = ag""/Qz/; (ag™t — nbg). It can be shown that and are related tb andg by

there exist choices fop such that thep,, ,, constitute an or- R N .
thonormal basis of?(R). Then, the coefficients,, ,, are given gn = (=1)"h_py1@ndgn, = (=1)"hny1 11)

by with
() = (o f) = / dt ). (6) S Bl o = b0 (12)

Such orthonormal bases can be constructed iteratively by a mishtonini et al.[19] give the corresponding filter coefficients for
tiresolution analysis, where the signal is approximated on scalesumber of such biorthogonal wavelet bases and test their per-
of decreasing resolution. This analysis was introduced by Malfarmance when applied to image compression. To our knowl-
[17], who also pointed out the connection between multiscadeige, none of these wavelets has so far been applied to image
decomposition schemes like the Laplacian Pyramid and a maithancement. In Section Ill, we will discuss enhancement re-
tiresolution approximation on the basis of a wavelet decompsults for one of these wavelet types.
sition in [18]. While in the Laplacian Pyramid, information in The above discussion can be generalized for images, where
successive levels is correlated (the transform is oversampledisy then end up with three “detail images”™—one which is
a factor of 4/3), it is possible to achieve an exact separationlofv-pass filtered in the: direction and high-pass filtered in
details based on an orthogonal wavelet representation, dendtely direction (D¥,), one which is low-pass filtered in the
as multiresolution approximation. direction and high-pass filtered in the direction (O%,) and

In a multiresolution approximation, in addition to the waveldinally one which is high-pass filtered in both directio3,
7, ascaling functiony is defined, which is a smoothing func-often termed “diagonal image”). The structure of the pyramidal
tion. The approximation of the functiofi at resolutionj — 1 decomposition and reconstruction in the two-dimensional case
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Fig. 2. Filter bank representation of the wavelet decomposition of an image.
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is shown in Figs. 2 and 3. The FWT is usually represented dsscribed above, but rather by a scaling of the filter. Non-orthog-
in Fig. 4. onal wavelets can, therefore, be used in the transform. letine
The FWT is not the only type of wavelet transform that magl. [13], [14], e.g., used a Laplacian filter and, thus, in fact per-
be used—and has been used—for the enhancement of imaf@sned a decomposition very similar to the Laplacian Pyramid,
Enhancement of medical images by means of a wavelet dert without the pyramidal structure. They then used a linear
composition was so far mainly performed on images decomemapping with two different slopes. The results obtained with
posed in a different way than presented above. Lafra.[13], this enhancement do not alter the general image impression as
[14] used both a redundant wavelet transform and reconstraedach as their results with other methods.
tion from wavelet maxima. The latter method was also applied Another method of wavelet decomposition, which is es-
to MR and CT images by Leatal.[12]. In the redundant wavelet pecially suitable for image compression and denoising, is
transform, the scaling of the wavelet is not achieved by subsathe coding of an image by wavelet maxima [20]. There, a
pling of the image in each step, as in the pyramidal algorithmagular (redundant) wavelet transform is applied to the image,



DIPPELet al. MULTISCALE CONTRAST ENHANCEMENT FOR RADIOGRAPHIES: LAPLACIAN PYRAMID VERSUS FWT 347

TABLE |
FILTER COEFFICIENTS OF THEBI-ORTHOGONAL 7—9-TAP WAVELET
DX USED IN THE COMPARISON

n 0 *1 +2 +3 +4

1 2712h, || 0.602949 | 0.266864 | -0.078223 | -0.016864 | 0.026749
DV ny 271/2h, || 0557543 | 0.295636 | -0.28772 | -0.045636 0

discuss the effect of a simple linear remapping of the subbands,
where the slope of the remapping look-up table (LUT) may vary
over the different scales. This should capture the essential ef-
fects of a general remapping of the subbands, while at the same
DY DY time facilitating comparison between different decomposition

1 1 methods. It also has the advantage that due to the use of constant
remapping factors for the subbands, in the case of the FWT the
enhancement is the same if remapping is applied to the wavelet
coefficients directly or to the reconstructed wavelet channel [this
can be seen from the linearity of (10)]. In the case of a nonlinear
Fig. 4. Represents the way in which a decomposed image is usally stored@mapping function, this would not be true.
presented. It is beyond the scope of this paper to discuss all wavelet

types that might be used for image decomposition and enhance-

but in a subsequent step only the position and magnitug@nt. Therefore, for the wavelet transform, we restrict ourselves
of the edges (i.e., wavelet maxima) of the detail images d@two different wavelet types: an orthonormal one, namely a
retained. The original image can be reconstructed in an iterathgubechies wavelet and a biorthogonal one introduced in [19],
process, which converges to the original image. In the first 2ghich is quite close to an orthonormal wavelet and showed
iteration steps, convergence is quite fast, however, afterwahgst results for the compression of images out of the biorthog-
it slows down considerably. The algorithm is in fact a vergnal wavelets discussed in [19]. The filter coefficients of this
good tool for noise reduction. Lairet al. performed contrast biorthogonal 7-9-tap wavelet from [19] are given in Table I, for
enhancement on mammograms by applying a constant, i@ Daubechies wavelets, see, e.g., [21] and [22].
scale-dependent gain on the wavelet maxima (with a lowerFor the comparison, we use two characteristically different
limit to avoid boosting of noise) [13]. Let al. did the same images. The first is a posterior-anterior (pa) image of a skull
for mammograms, MR and CT images, but without the noig€ig. 5), since it contains large, low-contrast structures such as
robustness feature [12]. The results for mammograms do tio¢ marking of the calotte by vessels, small low-contrast struc-
look as convincing as with the redundant wavelet transform ages, such as the facial structure and the nasal bone and quite
far as the general image impression is concerned. Note atb@rp edges, such as the skull-background transition and the fill-
that due to the large number of iteration steps needed to gehgs. In this particular image, there is a very low-contrast occip-
good approximation of the original image, this method is quiital fracture (behind the right eye), which is nearly invisible in
time-consuming. the original unprocessed image. The second image we use is a

To our knowledge, none of the wavelet-based enhancemerammogram (Fig. 9), since this is the image type used most
methods described here has been tested in clinical routine soifaprevious works on wavelet-based image enhancement. The
In Section Ill, we will discuss the possibility ofimage enhancemages were obtained by a Philips PCR 9000 computed radi-
ment based on the FWT and compare it with the results obtaimegraphy system, which already performs pre-ranging of the im-
by a Laplacian Pyramid. Some properties of the FWT indicatges.
that it might give better results than the Laplacian Pyramid. OneFor the linear enhancement of the skull image, we used the
would expect that the selective enhancement of structures ajain values found to be optimal in an observer preference study
certain size might be possible in animage where the detail infeit- Fulda Municipal Hospital for pa-skull images in the case of
mation of successive layers is orthogonal and that the isolatiegnlinear remapping with function (2). It has to be noted here
of noise might be achieved more effectively in a wavelet framehat in addition to the gaif¥ in (2), a global (constant) enhance-
work than in a Laplacian Pyramid. ment factor was applied to all subbands. For the linear enhance-
ment, we, therefore, used the product of the remapping@ain
from (2) and this global enhancement factor. These gain values
(see figure captions) were used both for remapping of the Lapla-

Obviously, a comparison of the performance of the two detan Pyramid decomposition and the wavelet decomposition.
composition schemes is a difficult task, since there is a varigfpr comparison, the corresponding result for nonlinear enhance-
of possible filters that might be used in the wavelet transforment of the Laplacian Pyramid decomposition is shown as well.
and an even greater variety of possible subband remapping fufbere, however, we did not include the noise-robustness feature
tions. As far as the remapping is concerned, we will, therefongsed in [10], to facilitate comparison with the linear case.

I1l. COMPARISON OF THEDECOMPOSITIONSCHEMES
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. L Fig. 6. Skull processed with Laplacian Pyramid and linear remapping. The
Fig. 5. Original image of skull. gain in the subbands wag = 1.68,g; = 1.68,9, = 1.68,g5 = 2.4,94 =
24,95 = 2.4,gs = 2.4.

It is clear that the selection of the gain values used in t
Laplacian Pyramid might introduce a bias toward this deco
position method in the comparison of the two decompositio
schemes, since the wavelet decomposition splits up the im
differently and the wavelet coefficients are not comparabl
with the gray values of the Laplacian Pyramid levels. Howeve
tests of many different parametrizations of the wavelet-bas
enhancement showed that the characteristics we are going
discuss here do not change by using different parameters—
ther hardly any enhancement is visible, or certain artifacts a
visible very well—regardless of the parametrization. We wil
come back to this later when discussing results of enhancem
of synthetic edges.

Figs. 6—-8 show the results obtained with the different rema
ping and decomposition types. The wavelet decompaosition w
performed with the biorthogonal 7-9-tap wavelet. Obviousl
linear and nonlinear enhancement via the Laplacian Pyra
show very similar results as compared to the FWT results. T
sharper edges in the linearly enhanced image (Fig. 6) seem
disturb the harmonic image impression a little, but there a
no obvious artifacts (e.g., ringing). The image enhanced v
the FWT instead gives a distinctly different impression. Apa
from the very disturbing artifacts visible near strong edges (e.
skull-cap/background or fillings), the general image impressi
is far more “high-pass-like” than in the Laplacian Pyramid en
hanced cases. The fine structure seems to come out more clee
which is best seen by the very good delineation of the fractugze, 7 skul d with Laplacian Pyramid and nonii .
but this renders the image “busier.” We will see later that the o 9. 7. Sl processed with Laplacian Pyramia and nonlinear remapping

) ; . gécording to (2). Parameters: gain, see Fig. 6, structure hapst:5.0,p; =
currence of these artifacts is a problem inherent to the wavetet p, = 5.0,p; = 2.0,ps = 2.0,p5s = 2.0,ps = 2.0.
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Fig. 8. Skull, processed with wavelet pyramid and linear remapping &ig. 9. Mammogram (original image).
subbands. The gain in the subbands was the same as for Fig. 6.

transform itself and is not caused by a bad choice of remapping
parameters or the type of wavelet.

The question is now whether this effect is observable as well
in mammograms, which so far have shown quite promising
results when other wavelet-based enhancement methods were
used. Figs. 9—11 show the results obtained for the same remap-
ping types as for the skull. However, the parameters used here
were the ones which in our clinical study at Fulda Municipal
Hospital showed to be optimal for lateral images of the sacrum,
which just like the mammograms is characterized by many
superposing structures of all sizes and low contrast [23].

Apparently, the problems which occur for the skull images
persist in the mammograms. Apart from that, the Laplacian
Pyramid enhancement gives very promising results, especially
with nonlinear remapping. In fact, the strong ringing artifacts
in the FWT-enhanced images arise from a property of the FWT
itself. They are not a result of the wavelet-type or remapping
parameters used (in fact, as we will see, this wavelet type is
least affected by this artifact of the types we have tested).

The fact that the artifacts are inherent in the FWT becomes
clear when we regard the step-response of the wavelet- and
Laplacian Pyramid-based enhancement. Figs. 13-16 show the
response of a wavelet-based and a Laplacian Pyramid-based

2The additional strong ringing artifacts at the top and right edges of the mam-
mogram are a result of the (artificial) edges produced by the periodic boundary
conditions we used for the wavelet transform (though not for the Laplacian
Pyramid). Although for the biorthogonal wavelet used, reflecting boundary coRig. 10. Mammogram processed with Laplacian Pyramid, but linear
ditions are possible, this is not the case for the (nonshift-invariant) orthogomemapping. The gain in the subbands was= 3.0,g; = 3.0,9, = 3.0,95 =
Daubechies wavelets. 3.9,94 =3.9,95 = 3.9,g¢ = 3.9.
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Fig. 11. Mammogram processed with Laplacian Pyramid and nonlinelig. 12. Mammogram processed with wavelet pyramid and linear remapping
remapping according to (2). Parameters: gain, see Fig. 10, hapst 2.1, of subbands. The gain in the subbands was the same as for Fig. 10.
p1=21p.=21p3=12,ps =12,p; =12,ps = 1.2

1000 [
enhancement to a step-edge, where only one level at atime  sg0 | ) ]
mapped by a linear LUT with slope 2. The difference betwee 0 ]

(all) wavelet types and the Laplacian Pyramid is striking. All ;388 a |

wavelets exhibit an additional overshooting at the edge (adc 500 - ) ]
tional to the inevitable one which in fact is a result of linear _508 }

enhancement of a bandpass image). It is most severe forthe (1000 |

thogonal) Daubechies wavelets. Particularly, there is no larg 508 )
difference between the Daubechies wavelets of 4th and 12 _5q9 ;
order, except for the fact that the 12th order wavelet results iz 1000 ¢ A
smoother waveforms around the edge. In fact, what we see 508 3 /
the edges is mainly the wavelet itself on this particular scale. I® -500 :

ue

T

ray val

) X i f
the case of the Daubechies wavelets, the asymmetric respor 300 ) 1
of the wavelets is due to the asymmetry of the wavelet itself. | 0 ]
the case of the biorthogonal wavelet, it arises from the fact thi  -500 ) *

. ) ; . : 1000 [ v

high- and low-pass filter are shifted by one pixel with respec 55 L / ]
to each other, which is why the asymmetry disappears for lowt 0 ]
scales, since then the exact position of the filters with respect ~ ~%%sg 1050 1150
the edge is no longer so important due to the smoothing of tt position

edge.
- . . - ig. 13. Effect of linear enhancement of a single level (multiplication of the
Figs. 1315 in fact explain the appearance of Figs. 8 and \igvelet coefficients by a factor of two) for Daubechies 4th order wavelet. From

with respect to their counterparts enhanced via the Laplacisgitom to top: result of enhancement of level 1, 2, ..., 6. The dotted line shows
Pyramid. While at high-resolution levels the second overshdbg original edge.

is relatively small compared to the one directly at the edge, its

height grows to the same order of magnitude as that of the firstThe reason for the additional overshooting of the signal in
overshoot if the enhancement took place in the lower resolutitre case of the FWT is the fact that the enhanced bandpass is
levels of the pyramid. This property accounts for the impressidigh-pass filtered in the back-transform once more, thus empha-
that in the enhanced images, artifacts occur only at a relativeiging the edges even more. If no enhancement takes place, this
large scale—they are always present, but become visible onlefifiect cancels out when the signal is added to the corresponding
the enhancement of larger scales. low-pass, since the low-pass, too, was low-pass filtered once
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Fig. 14. Same as Fig. 13, but for a Daubechies 12th order wavelet. Fig. 16. Effect of linear enhancement of a single level (multiplication of the
corresponding bandpass image by a factor of two) in the Laplacian Pyramid.
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Fig. 15. Same as Fig. 13, but for the biorthogonal 7-9 tap wavelet. Fig. 17. Response of Laplacian Pyramid-based enhancement with varying
gain to a step edge. The remapping function was linear. Dotted-dashed line:
original edge; full line;go = --- = g¢ = 2.0; long-dashed lingj, = 4.0,

more in the back-transform. If, however, certain levels are ef-=35 4, =3.0,¢; = 2.5,¢s = 2.0,¢5 = 1.5,gs = 1.0: dotted lineg, =
hanced, the effects do not cancel any more. In the Laplaciaf 9. = 15,92 =2.0,9: = 2.5,94 = 3.0,95 = 3.5,9¢ = 4.0.
Pyramid, on the other hand, only smoothing operations take
place in the back-transform, thus smearing out the edge aame effect as unsharp masking with a correspondingly large
hancement particularly at lower scales. kernel. For the FWT-based enhancement, results are similar (see
The effect of the multiscale enhancement with varying gakrig. 18), though again disturbed by a second overshoot. It should
becomes even clearer if we consider its response to a (shdrp)noted, too, that even though the extension of the enhanced
step edge and to a softer edge (the step edge smoothed widlige is similar in both cases (Laplacian Pyramid and FWT), it
box kernel of size 150). The effect of both Laplacian Pyramidecays much faster in the beginning for the FWT, i.e., looks
and FWT-based enhancement with varying gain for these kinstsarper.
of edges is shown in Figs. 17-20. For a soft edge, the difference between Laplacian Pyramid-
Fig. 17 shows that in the Laplacian Pyramid, a pronounchased and wavelet-based enhancement is even more striking.
ment of the higher frequencies results in a very sharp accétig. 19 shows that in fact, since the edge only reaches a sig-
tuation of the edge, while a pronouncement of lower frequenificant slope at the lower levels of the pyramid, equally strong
cies still enhances the edge, but far more softly and not by teehancement of all scales leads to a very similar result as par-
same amplitude. Equal enhancement of all scales clearly hasttbelarly strong enhancement on the lowest scale. For the FWT,
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Fig. 18. Response of wavelet-based enhancement with varying gain to a $t&p 20. Response of wavelet-based enhancement with varying gain to a soft

edge. Line styles are the same as in Fig. 17. edge. Line styles are the same as in Fig. 17. The dashed line additionally shows
the result for equally strong enhancement in all levels, but for a FWT one level
2000 deeper.

T ) achieved. Also, a nonlinear remapping function would not over-
\ come this problem.
- T ... S

1000 /;/ IV. DISCUSSION
) The results presented in the previous section show that al-
// though the FWT has some properties that seem to make it a good
] candidate for multiscale image enhancement (orthogonality of
~ / ) corresponding high- and low-pass, direction sensitivity, good
- \\/ sensitivity for small structures), there is a problem arising from

Y - the fact that in the back-transform, the high-pass has to be fil-
tered with a wavelet once more before adding it to the corre-
1000 ‘ sponding low-pass, thus producing visible ringing artifacts if the
600 800 1000 1200 1400  corresponding high-pass was previously enhanced. In fact, this

position is not a completely new aspect—the artifacts that occur when

g#&ferent levels are enhanced differently lead to similar problems

Fig. 19. Response of Laplacian Pyramid-based enhancement with vary T ; .
gain to a soft edge. Line styles are the same as in Fig. 17. The dashed &% 100 strong quantization in compression with wavelets [22].

additionally shows the result for equally strong enhancement in all levels, igtill, the problem is not so severe in compression applications,
for a Laplacian Pyramid with one more decomposition level. since best compression rates can be achieved particularly by
compressing higher scales, which are not that sensitive to these
the picture is completely different. Here, hardly any responseadifacts. However, in the multiscale enhancement ofimages, we
the enhancement is discernible in Fig. 20 if the same numberazfrticularly want to explore the possibilities of enhancement of
pyramid levels as before is used. The edge cannot be resolleder levels. However, since very small details seem to be en-
in the same number of levels as within the Laplacian Pyramidinced better by the FWT than by the Laplacian Pyramid, in an
framework. If we use one more level in the decomposition, tlremhancement based on the remapping of the higher levels only,
enhanced edge appears, though spoilt by the same artifactthas=WT might yield better results than the standard technique.
the sharp edge. The second overshoot is even more severe fhan, noise might be filtered out better by a wavelet transform.
for the sharp edge. Besides, even if we only take into accounfThe results presented previously by Lagteal.[13], [14] ac-
the first overshoot enhancing the edge, the amount of enhanitelly confirm our results. The enhanced images they produced
ment is less than in the case of the Laplacian Pyramid. with the redundant wavelet transform are very similar to ours
From the response shown in Figs. 17-20 it can be concludetich were enhanced with the Laplacian Pyramid. This is due to
that one may not achieve a similar image impression as for tthe fact that the filter used there is essentially a Laplacian and the
Laplacian Pyramid by means of an enhancement via the FWSRck-transform filter in this case is a smoothing filter, just like
Though remapping of the highest levels only would look veriy the Laplacian Pyramid. The enhancement results for other
similar to the results of the Laplacian Pyramid (even might bringavelet transform types shown in [13] alter the image impres-
out fine structures better), there is no way in which a satisfasion so thoroughly, that they would be inappropriate for general
tory (artifact-free) enhancement of larger structures might badiographic applications.

gray value
e
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A comparison of the images enhanced linearly and nonlin-[5] P. Saipetch, B. K. T. Ho, R. Panwar, M. Ma, and J. Wei, “Applying

early in the framework of a Laplacian Pyramid decomposition wavelet transforms with arithmetic coding to radiological image com-
. . . . .. ression,"lEEE Eng. Med. Biol. Magvol. 14, pp. 587-593, Sept./Oct.
shows that nonlinearity of the remapping function is indeed an 2995‘ 9 9 PP P

important feature to avoid ringing artifacts at very strong edges.[6] A. Manduca, “Compressing images with wavelet/subband coding,”
The analysis of the response of the filter to a step-edge shows !EEE Eng. Med. Biol. Magvol. 14, pp. 639-646, Sept./Oct. 1995.

that enh t of hiaher | | h tlv sh d Z. Yang, M. Kallergi, R. A. DeVore, B. Lucier, W. Qian, R. A. Clark,
at enhancement of higher levels enhances mostly sharp edg and L. P. Clarke, “Effect of wavelet bases on compressing digital mam-

and small details. On the other hand, enhancement of lower mograms,1EEE Eng. Med. Biol. Magvol. 14, pp. 570-577, Sept./Oct.
levels enhances all edges, but the sharp edges are enhanced very 1995.

- . u et . . M. Unser and A. Aldroubi, “A review of wavelets in biomedical appli-
softly, thus, probably giving rise to the “soft” image impression ™ ¢.iions "Proc. IEEE vol. 84, pp. 626638, Apr. 1996.

of certain images as remarked in our clinical study. Small de-[9] P.Vvuylsteke and E. Schoeters, “Multiscale image contrast amplification

tails, by contrast, will not be enhanced if only the lower pyramid %fsslg(f\m)'" in Proc. SPIE Image Processingol. 2167, 1994, pp.

levels are enhanced, since they are smoothed out there alreagl)@] M. Stahl, T. Aach, T. M. Buzug, S. Dippel, and U. Neitzel, “Noise-resis-
tant weak-structure enhancement for digital radiographyProt. SPIE
Med. Imag. 1999, vol. 3661, pp. 1406-1417.

[11] E. Dencker, M. Stahl, S. Dippel, C. M. Schaefer-Prokop, S. Baus, S.

We have shown that for the enhancement of radiographs in Goehde, D. Hoegemann, A. Leppert, and M. Galanski, “Nonlinear mul-

. . . tiscale processing in selenium-based chest radiograph#%CR, Book
general, decomposition by an FWT leads to undesirable artifacts o apsiracts  Vienna, Austria: ECR. 1999.

in the enhanced images. By contrast, the Laplacian Pyramid2] J.Lu, D. M. Healy, and J. B. Weaver, “Contrast enhancement of medical
seems to be a more suitable decomposition method for multi- ~ images using multiscale edge representati@rpt. Eng, vol. 33, no. 7,

o . pp. 21512161, 1994.
scale enhancement, since itis free from such artifacts and resufi®) A~ aine, J. Fan, and W. Yang, “Wavelets for contrast enhancement

in very balanced image impression. The detailed discussion of  of digital mammography,1EEE Eng. Med. Biol. Mag.vol. 14, pp.

other wavelet decomposition methods is beyond the scope of = 536-550, Sept/Oct. 1995. . y
14] X. Zong, A. F. Laine, E. A. Geiser, and D. C. Wilson, “De-noising

this paper_, since here, we res”'FF ourselves to pyran_ndal IM="" and contrast enhancement via wavelet shrinkage and nonlinear adap-
plementations of the decomposition for reasons of time and tive gain,” inProc. SPIE Wavelet Applications JNol. 2762, 1996, pp.

space constraints in the processing chain of digital radiograp 566-574.

H h h in th f .dXIS] J.-P. Bolet, A. R. Cowen, J. Launders, A. G. Davies, G. J. S. Parkin,
system. However, as we have shown, In the case ot a pyrami and R. F. Bury, “Progress with an “all-wavelet” approach to image en-

decomposition of the image, the Laplacian Pyramid seemstobe hancement and de-noising of direct digital thorax radiographic images,”
the method of choice. in Proc. 6th Int. Conf. Image Processing and its Applicationd. 1,
Dublin, Ireland, 1997, Conf. Publ. 443, pp. 244-248.
[16] P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact
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