Distributed Systems
CS 15-440

Lecture 23, July 24, 2014
Gregory Kesden

Borrowed from our good friends in Doha:
Majd F. Sakr, Mohammad Hammoud and Vinay Kolar
Objectives

Discussion on Virtualization

- Why virtualization, and virtualization properties
- Virtualization, para-virtualization, virtual machines and hypervisors
- Virtual machine types
- Partitioning and Multiprocessor virtualization
- Resource virtualization
Benefits of Virtualization

- Here are *some* of the benefits that are typically provided by a virtualized system:
 - A system VM provides a sandbox that isolates one system environment from other environments.
 - Virtualization helps isolate the effects of a failure to the VM where the failure occurred.
 - A single hardware platform can support multiple operating systems concurrently.
 - A virtualized system can be (dynamically or statically) re-configured for changing re-configuration needs.
Operating Systems Limitations

- OSs provide a way of virtualizing hardware resources among processes.
- This may help isolate processes from one another.
- However, this does not provide a virtual machine to a user who may wish to run a different OS.
- Having hardware resources managed by a single OS limits the flexibility of the system in terms of available software, security, and failure isolation.
- Virtualization typically provides a way of relaxing constraints and increasing flexibility.
Virtualization Properties

1. **Isolation**
 - Fault Isolation
 - Software Isolation
 - Performance Isolation (accomplished through scheduling and resource allocation)

2. **Encapsulation**
 - All VM state can be captured into a file (i.e., you can operate on VM by operating on file – cp, rm)
 - Complexity is proportional to virtual HW model and independent of guest software configuration

3. **Interposition**
 - All guest actions go through the virtualizing software which can inspect, modify, and deny operations
What is Virtualization?

- Informally, a virtualized system (or subsystem) is a mapping of its interface, and all resources visible through that interface, to the interface and resources of a real system.
- Formally, virtualization involves the construction of an isomorphism that maps a virtual guest system to a real host system (Popek and Goldberg 1974).

- Function V maps the guest state to the host state.
- For a sequence of operations, e, that modifies a guest state, there is a corresponding e' in the host that performs an equivalent modification.
- How can this be managed?
Abstraction

- The key to managing complexity in computer systems is their division into *levels of abstraction* separated by *well-defined interfaces*.

- Levels of abstraction allow implementation details at lower levels of a design to be ignored or simplified.

- Files are an abstraction of a Disk.
- A level of abstraction provides a simplified interface to underlying resources.
Virtualization and Abstraction

- Virtualization uses abstraction but is different in that it doesn’t necessarily hide details; the level of detail in a virtual system is often the same as that in the underlying real system.

Virtualization provides a different interface and/or resources at the same level of abstraction.
Objectives

Discussion on Virtualization

- Why virtualization, and virtualization properties
- Virtualization, para-virtualization, virtual machines and hypervisors
- Virtual machine types
- Partitioning and Multiprocessor virtualization
- Resource virtualization
Virtual Machines and Hypervisors

- The concept of virtualization can be applied not only to subsystems such as disks, but to an entire machine denoted as a virtual machine (VM).

- A VM is implemented by adding a layer of software to a real machine so as to support the desired VM’s architecture.

- This layer of software is often referred to as virtual machine monitor (VMM).

- Early VMMs are implemented in firmware.

- Today, VMMs are often implemented as a co-designed firmware-software layer, referred to as the hypervisor.
A Mixed OS Environment

- Multiple VMs can be implemented on a single hardware platform to provide individuals or user groups with their own OS environments.
Full Virtualization

- Traditional VMMs provide **full-virtualization**:
 - The functionally provided is identical to the underlying physical hardware
 - The functionality is exposed to the VMs
 - They allow unmodified guest OSs to execute on the VMs
 - This might result in some performance degradation

- E.g., **VMWare** provides full virtualization
Para-Virtualization

- Other types of VMMs provide para-virtualization:
 - They provide a virtual hardware abstraction that is *similar, but not identical* to the real hardware
 - They modify the guest OS to cooperate with the VMM
 - They result in lower overhead leading to better performance
 - E.g., *Xen* provides both para-virtualization as well as full-virtualization
Virtualization and Emulation

- VMs can employ *emulation techniques* to support cross-platform software compatibility.

- Compatibility can be provided either at the system level (e.g., to run a Windows OS on Macintosh) or at the program or process level (e.g., to run Excel on a Sun Solaris/SPARC platform).

- Emulation is the process of implementing the interface and functionality of one system on a system having a different interface and functionality.

- It can be argued that virtualization itself is simply a form of emulation.
Objectives

Discussion on Virtualization

Virtual machine types

Partitioning and Multiprocessor virtualization

Resource virtualization

Why virtualization, and virtualization properties

Virtualization, para-virtualization, virtual machines and hypervisors
Background: Computer System Architectures

Instruction Set Architecture (ISA): 7 & 8
Application Binary Interface (ABI): 3 & 7
Application Programming Interface (API): 2 & 7
Types of Virtual Machines

- As there is a process perspective and a system perspective of machines, there are also process-level and system-level VMs.
- Virtual machines can be of two types:
 1. Process VM
 - Capable of supporting an individual process
 2. System VM
 - Provides a complete system environment
 - Supports an OS with potentially many types of processes
Process Virtual Machine

- Runtime is placed at the ABI interface
- Runtime emulates both user-level instructions and OS system calls
System Virtual Machine

- VMM emulates the ISA used by one hardware platform to another, forming a system VM.
- A system VM is capable of executing a system software environment developed for a different set of hardware.
Native and Hosted VM Systems

Traditional Uniprocessor System

Native VM System

User-mode Hosted VM System

Dual-mode Hosted VM System
A Taxonomy

Process VMs
- Same ISA
 - Multiprogrammed Systems
 - Dynamic Binary Optimizers
- Different ISA
 - Dynamic Translators
 - HLL VMs

System VMs
- Same ISA
 - Classic-System VMs
 - Hosted VMs
- Different ISA
 - Whole-System VMs
 - Co-designed VMs
The Versatility of VMs

Java Application

JVM

Linux IA-32

VMWare

Windows IA-32

Code Morphing

Crusoe VLIW
Objectives

Discussion on Virtualization

Why virtualization, and virtualization properties

Virtualization, para-virtualization, virtual machines and hypervisors

Virtual machine types

Partitioning and Multiprocessor virtualization

Resource virtualization
Multiprocessor Systems

- Multiprocessor systems might have 1000s of processors connected to TBs of memory and PBs of disk capacity.

- Often there is a mismatch between the ideal number of processors an application needs and the actual number of physical processors available.

- It is more often the case that applications cannot exploit more than a fraction of the processors available. This is mainly because of:
 - Limitations in the parallelism available in the programs.
 - Limitations in the scalability of applications due to the overhead of communication between processors.
Partitioning

- The increasing availability of multiprocessor systems has led to the examination of techniques that can help utilize them more effectively.

- Techniques have been developed in which the multiprocessor system can be partitioned into multiple partitions.
 - A partition is given a subset of the resources available on the system.
 - Hence, using partitioning, multiple applications can simultaneously exploit the available resources of the system.

- Partitioning can be achieved:
 - Either in-space (referred to as physical partitioning).
 - Or in-time (referred to as logical partitioning).
Physical Partitioning

- With physical partitioning, each partition is assigned resources that are physically distinct from the resources used by the other partitions.
Physical Partitioning

- Physical partitioning allows a partition to own its resources physically.

- It is not permissible for two partitions to share the resources of a single system board.

- Partitions are configured by a central control unit that receives commands from the console of the system admin and provisions hardware resources accordingly.

- The number of partitions that can be supported in physically partitioned systems is limited to the number of available physical processors.
Physical Partitioning - Advantages

- Physical partitioning provides:
 - **Failure Isolation**: it ensures that in the event of a failure, only the part of the physical system that houses the failing partition will be affected.
 - **Better security isolation**: Each partition is protected from the possibility of intentional or unintentional denial-of-service attacks by other partitions.
 - **Better ability to meet system-level objectives** (these result from contracts between system owners and users of the system).
 - **Easier management of resources**: no need of sophisticated algorithms for scheduling and management of resources.
Physical Partitioning - Disadvantages

While physical partitioning has a number of attractive features, it has some major disadvantages:

- **System utilization**: Physical partitioning is probably not the ideal solution if system utilization is to be optimized.
 - It is often the case that each of the physical partitions is underutilized.

- **Load balancing**: With physical partitioning, dynamic workload balancing becomes difficult to implement.
Logical Partitioning

- With logical partitioning, partitions share some of the physical resources, usually in a *time-multiplexed* manner.
Logical Partitioning

- With logical partitioning it is permissible for two partitions to share the resources of a single system board.

- Logical partitioning makes it possible to partition an n-way system into a system with more than n partitions, if so desired.

- Logical partitioning is more flexible than physical partitioning but needs additional mechanisms to provide safe and efficient way of sharing resources.

- Logical partitioning is usually done through a VMM or a hypervisor and provides what is referred to as multiprocessor virtualization.
Multiprocessor Virtualization

- A virtualized multiprocessor gives the appearance of a system that may or may not reflect the exact configuration of the underlying physical system.