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Transport Protocols

 UDP provides just integrity and demux

 TCP adds…
» Connection-oriented

» Reliable

» Ordered

» Point-to-point

» Byte-stream

» Full duplex

» Flow and congestion controlled
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UDP: User Datagram Protocol 
[RFC 768]

 “No frills,” “bare bones” 
Internet transport protocol

 “Best effort” service, UDP 
segments may be:

» Lost

» Delivered out of order to app

 Connectionless:

» No handshaking between 
UDP sender, receiver

» Each UDP segment handled 
independently of others

Why is there a UDP?

 No connection establishment 
(which can add delay)

 Simple: no connection state 
at sender, receiver

 Small header

 No congestion control: UDP 
can blast away as fast as 
desired
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UDP, cont.

 Often used for 
streaming multimedia 
apps
» Loss tolerant

» Rate sensitive

 Other UDP uses 
(why?):
» DNS, SNMP

 Reliable transfer over 
UDP
» Must be at application 

layer

» Application-specific error 
recovery

Source port # Dest port #

32 bits

Application

data 

(message)

UDP segment format

Length Checksum

Length, in

bytes of UDP

segment,

including

header
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UDP Checksum

Sender:

 Treat segment contents as 
sequence of 16-bit integers

 Checksum: addition (1’s 
complement sum) of segment 
contents

 Sender puts checksum value 
into UDP checksum field

Receiver:

 Compute checksum of 
received segment

 Check if computed 
checksum equals 
checksum field value:

» NO - error detected

» YES - no error detected

But maybe errors 
nonethless?

Goal: detect “errors” (e.g., flipped bits) in transmitted segment 
– optional use!
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High-Level TCP Characteristics

 Protocol implemented entirely at the ends
» Fate sharing

 Protocol has evolved over time and will 
continue to do so

» Nearly impossible to change the header

» Use options to add information to the header

» Change processing at endpoints

» Backward compatibility is what makes it TCP 
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TCP Header

Source port Destination port

Sequence number

Acknowledgement

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN

FIN

RESET

PUSH

URG

ACK
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Evolution of TCP

1975 1980 1985 1990

1982

TCP & IP
RFC 793 & 791

1974

TCP described by

Vint Cerf and Bob Kahn

In IEEE Trans Comm

1983

BSD Unix 4.2

supports TCP/IP

1984

Nagel’s algorithm

to reduce overhead

of small packets;

predicts congestion 

collapse

1987

Karn’s algorithm

to better estimate 

round-trip time

1986

Congestion 

collapse

observed

1988

Van Jacobson’s 

algorithms

congestion avoidance 

and congestion control

(most implemented in 

4.3BSD Tahoe)

1990

4.3BSD Reno

fast retransmit

delayed ACK’s

1975

Three-way handshake

Raymond Tomlinson

In SIGCOMM 75
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TCP Through the 1990s

1993 1994 1996

1994

ECN

(Floyd)

Explicit 

Congestion

Notification

1993

TCP Vegas 

(Brakmo et al)

delay-based 

congestion avoidance

1994

T/TCP

(Braden)

Transaction

TCP

1996

SACK TCP

(Floyd et al)

Selective 

Acknowledgement

1996

Hoe

NewReno startup 

and loss recovery

1996

FACK TCP

(Mathis et al)

extension to SACK
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Outline

 Transport introduction

 Error recovery & flow control
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Stop and Wait

Time

T
im

e
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t

 ARQ
» Receiver sends acknowledgement 

(ACK) when it receives packet

» Sender waits for ACK and 
timeouts if it does not arrive 
within some time period

 Simplest ARQ protocol

 Send a packet, stop and 
wait until ACK arrives 

Sender Receiver
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Recovering from Error
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ACK lost Packet lost Early timeout

DUPLICATE

PACKETS!!!
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 How to recognize a duplicate

 Performance
» Can only send one packet per round trip

Problems with Stop and Wait
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How to Recognize Resends?

 Use sequence numbers
» both packets and acks

 Sequence # in packet is 
finite  How big should it 
be? 
» For stop and wait?

 One bit – won’t send seq 
#1 until received ACK for 
seq #0
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How to Keep the Pipe Full?

 Send multiple packets without 
waiting for first to be acked

» Number of pkts in flight = window

 Reliable, unordered delivery

» Several parallel stop & waits

» Send new packet after each ack

» Sender keeps list of unack’ed 
packets; resends after timeout

» Receiver same as stop & wait

 How large a window is needed?

» Suppose 10Mbps link, 4ms delay, 
500byte pkts

– 1? 10? 20?

» Round trip delay * bandwidth = 
capacity of pipe
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Sliding Window

 Reliable, ordered delivery

 Receiver has to hold onto a packet until all 
prior packets have arrived
» Why might this be difficult for just parallel stop & wait?

» Sender must prevent buffer overflow at receiver

 Circular buffer at sender and receiver
» Packets in transit  buffer size 

» Advance when sender and receiver agree packets at 
beginning have been received
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ReceiverSender

Sender/Receiver State

… …

Sent & Acked Sent Not Acked

OK to Send Not Usable

… …

Max acceptable

Receiver window 

Max ACK received Next seqnum

Received & Acked Acceptable Packet

Not Usable

Sender window

Next expected
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Sequence Numbers

 How large do sequence numbers need to be?

» Must be able to detect wrap-around

» Depends on sender/receiver window size

 E.g.

» Max seq = 7, send win=recv win=7

» If pkts 0..6 are sent succesfully and all acks lost

– Receiver expects 7,0..5, sender retransmits old 0..6!!!

 Max sequence must be  send window + recv window
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Window Sliding – Common Case

 On reception of new ACK (i.e. ACK for something that was not 
acked earlier)

» Increase sequence of max ACK received

» Send next packet

 On reception of new in-order data packet (next expected)

» Hand packet to application

» Send cumulative ACK – acknowledges reception of all packets up to 
sequence number

» Increase sequence of max acceptable packet
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Loss Recovery

 On reception of out-of-order packet
» Send nothing (wait for source to timeout)

» Cumulative ACK (helps source identify loss)

 Timeout (Go-Back-N recovery)
» Set timer upon transmission of packet

» Retransmit all unacknowledged packets

 Performance during loss recovery
» No longer have an entire window in transit

» Can have much more clever loss recovery
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Go-Back-N in Action



21

Selective Repeat

 Receiver individually acknowledges all correctly received 
pkts

» Buffers packets, as needed, for eventual in-order delivery to upper 
layer

 Sender only resends packets for which ACK not received

» Sender timer for each unACKed packet

 Sender window

» N consecutive seq #’s

» Again limits seq #s of sent, unACKed packets
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Selective Repeat: Sender, 
Receiver Windows
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Important Lessons

 Transport service
» UDP  mostly just IP service

» TCP  congestion controlled, reliable, byte stream

 Types of ARQ protocols
» Stop-and-wait  slow, simple

» Go-back-n  can keep link utilized (except w/ losses)

» Selective repeat  efficient loss recovery

 Sliding window flow control
» Addresses buffering issues and keeps link utilized
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Transmission Control Protocol (TCP)

 Reliable

 Connection-oriented

 Point-to-point

 Full-duplex

 Streams, not messages
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Initialization: 3 Way Handshake

Initiator Participant
SYN (Synchronization Sequence Number)
SYN = ISN + Port #

• The client begins it's active open by sending a SYN to the server. SYN

stands for "Synchronization Sequence Number", but it actually contains much 

more. 

• The SYN message contains the initial sequence number (ISN). This ISN is 

the starting value for the sequence numbering that will be used by the client to 

detect duplicate segments, to request the retransmission of segments, &c. 

• The message also contains the port number. Whereas the hostname and IP 

address name the machine, the port number names a particular processes. A 

process on the server is associated with a particular port using bind(). 
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Initialization: 3 Way Handshake

Initiator Participant
SYN + ACK of SYN

(ACK of SYN using initiator-ISN+1)

• The server performs the passive open, by sending its own ISN to the client. 

It also sends an Acknowledgement (ACK) of the client's SYN, using the ISN 

that the client sent plus one. 
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Initialization: 3 Way Handshake

Initiator Participant
ACK of SYN

(ACK of SYNC uses participant-ISN + 1)

• The last step is for the client to acknowledge the server’s SYN
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Initialization: 3 way Handshake

Initiator Participant
SYN (Synchronization Sequence Number)
SYN = ISN + Port #

Initiator Participant
ACK of SYN

(ACK of SYNC uses participant-ISN + 1)

Initiator Participant
SYN + ACK of SYN

(ACK of SYN using initiator-ISN+1)
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How and Why is the ISN Chosen?

 Why do we send the ISN, instead of just always start with 1? 

 The answer to this is that we don't want to misinterpret an old segment. For 
example, consider a short-lived client process that always talked to the 
same server. If the ISN's would always start with one, a delayed segment 
from one connection might be misinterpreted as the next segment for a 
newer instance of the same client/server-port combination. By doing 
something more random, we reduce the bias toward low sequence 
numbers, and reduce the likelihood of this type of situation. 

 RFC 793 specifies that the ISN should be selected using a system-wide 32-
bit counter that is incremented every 4 microseconds. This approach 
provides a "moving target" that makes segment number confusion 
unlikely. 

 4.4BSD actually does something different. It increments the counter by 64K 
every half-second and every time a connection is established. This 
amortizes to incrementing the counter by one every 8 microseconds. 
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Connection Termination

 When either side of a TCP connection is done sending data, it 
sends a FIN (finished) to the other side. When the other side 
receives the FIN, it passes an EOF up the protocol stack to the 
application. 

 Although TCP is a full-duplex protocol, the sending of a FIN 
doesn't tear down the whole connection. Instead it simply 
indicates that the side sending the FIN won't send any more data. It 
does not prevent the other side from sending data. For this reason, 
it is known as a half-close. In some sense, a half-closed 
connection is a half-duplex connection. 

 Although TCP allows for this half-closed state, in practice, it is 
very rarely used. For the most part, when one side closes a 
connection, the other side will immediately do the same. It is also 
the case that both sides can concurrently sends FINs. This 
situation, called a simultaneous close is perfectly legal and 
acceptable. 
One Side Other side

ACK of SYN

(ACK of SYNC uses participant-ISN + 1)
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Half Close

One Side Other side
FIN

One Side Other side
ACK of FIN
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Maximum Segment Life

 MSL stands for Maximum Segment Life.

 Basically, MSL is a constant that defines the maximum 
amount of time that we believe a segment can remain in 
transit on the network. 

 2MSL, twice this amount of time, is therefore an 
approximation of the maximum round trip time. 

 We wait 2MSL after sending the ACK of the FIN, before 
actually closing the connection,  to protect against a lost 
ACK. 

 If the ACK is lost, the FIN will be retransmitted and received. 
The ACK can then be resent and the 2MSL timer restarted. 
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What About Crashes, &c.

 But wait, if both sides need to close the connection, what 
happens if the power fails on one side? Or a machine is shut 
off? Or the network goes down? 

 Well, the answer to this is very simple: Nothing. Each side 
will maintain at least a half-open connection until the other 
side sends a FIN. If the other side never sends a FIN, barring 
a reboot, the connection will remain at least half-open on the 
other side. 

 What happens if neither process ever sends data? The 
answer to this is also very simple: Nothing. Absolutely 
nothing is sent via TCP, unless data is being sent. 
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TCP Keep-Alive Option

 Well, some people were as upset as you were by the idea that a half-open connection 
could remain and consume resources forever, if the other side abruptly died or retired. 
They successfully lobbied for the TCP Keepalive Option. 

 This option is disabled by default, but can be enabled by either side. If it is enabled on 
a host, the host will probe the other side, if the TCP connection has been idle for more 
than a threshold amount of time. 

 This timer is system-wide, not connection wide and the RFC states that, if enabled, it 
must be no less than two hours. 

 Many people (including your instructor) believe that this type of feature is not 
rightfully in the jurisdiction of a transport layer protocol. We argue that this type of 
session management is the rightful jurisdiction of the application or a session-level 
protocol. 

 Please do realize that this is a religious issue for many and has received far more 
discussion than it is probably worth. Independent of your beliefs, please don't forget 
that the timer is system-wide -- this can be a pain and might even lead many keepalive-
worshipers opt for handling this within the applications. 
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Reset (RST)

 TCP views connections in terms of sockets. A popular author, Richard Stevens 
refers to these as connections -- this is wrong, but has worked its way into the 
popular vernacular. 

 A socket is defined as the following tuple: 

<destination IP address, destination port #, source IP address, source 
port number> 

 A RST is basically a suggestion to abort the connection. 

 A reset will generally be sent by a host if it receives a segment that doesn't 
make sense. Perhaps the host crashed and then received a segment for a port 
that is no longer in use. 

 In this case, the RST would basically indicate, "No one here, but us chickens" 
and the side that received the RST would assume a crash, close its end and 
roll-over or handle the error. 
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Transferring Data

• TCP operates by breaking data up into pieces known as 
segments. 

• The TCP packet header contains many pieces of 
information. Among them is the Maximum Segment Length 
(MSL) that the host is willing to accept. 

• In order to send data, TCP breaks it up into segments that 
are not longer than the MSL. 
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Acknowledgement

• Fundamentally, TCP sends a segment of data, including the segment 
number and waits for an ACK. But TCP tries to avoid the overhead involved 
in acking every single segment using two techniques. 

• TCP will wait up to 200mS before sending an ACK. The hope is that within 
that 200 mS a segment will need to be sent the other way. If this happens, 
the ACK will be sent with this segment of data. This type of ACK is known 
as a piggyback ACK. 

• Alternatively, no outgoing segment will be dispatched for the sender within 
the 200mS window. In this case the ACK is send anyway. This is known as 
a delayed ACK. 

• Note: My memory is that the RFC actually says 500mS, but the 
implementations that I remember use a 200mS timer. No big deal, either 
way. 
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More About the ACKs

 TCP uses cumulative acknowledgement. 

 Except, if a segment arrives out of order, TCP will use 
an immediate acknowledgement of the last contiguous 
segment received.

 This tells the sender which segment is expected. 

 This is based on the assumption that the likely case is 
that the missing segment was lost not delayed. 

 If this assumption is wrong, the first copy to arrive will 
be ACKed, the subsequent copy will be discarded. 
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Nagle Algorithm

 One interesting observation is that it takes just as much overhead to send 
a small amount of data, such as one character, as it does a large amount of 
data, such as a full MSL of data. 

 The massive overhead associated with small segments can be especially 
wasteful if the network is already bogged down. 

 One approach to this situation is to delay small segments, collecting them 
into a full segment, before sending. This approach reduces the amount of 
non-data overhead, but it can unnecessarily delay small segments if the 
network isn't bogged down.

 The compromise approach that is used with TCP was proposed by Nagle. 
The Nagle Algorithm will send one small segment, but will delay the others, 
collecting them into a larger segment, until the segment that was sent is 
acknowledged. In other words, the Nagle algorithm allows only one 
unacknowledged small segment to be send. 
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Nagle Algorithm

 This approach has the following nice property. If the network is very 
bogged down, the ACK will take a long time. This will result in many small 
segments being collected into a large segment, reducing the overhead. If 
the network isn't bogged down, the ACK will arrive very rapidly, allowing 
the next small segment to be sent without much delay. If the network is 
fast, fewer small segments will be concatenated, but who cares? The 
network isn't doing much else. 

 In other words, the Nagle algorithm favors the sending of short segments 
on a "fast network" and favors collecting them into larger segments on a 
"slow network." This is a very nice property! 

 There are certain circumstances where the Nagle approach should be 
disabled. The classic example is the sending of mouse movements for the 
X Window system. In this example, it is critically important to dispatch the 
short packets representing mouse movements in a timely way, 
independent of the load on the network. These packets need a response in 
soft real-time to satisfy the human user. 
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4  5  6  7  8  9  10

The Sliding Window Model

 As we mentioned earlier, TCP is a sliding window protocol much like the example 
protocol that we discussed last class. The sliding window model used by TCP is 
almost identical to model used in the example. 

 In the case of TCP, the receiver's window is known as the advertised window or the 
offered window. The side of the window is advertised by the receiver as part of the 
TCP header attached to each segment. By default, this size is usually 4096 bytes. 

 The usable window is the portion of the advertised window that is available to receive 
segments. 

 The only significant difference is the one that we mentioned before: TCP uses a 
cumulative ACK instead of a bit-mask. 

1  2  3 11  13

Sent and 

ACKed

Can’t send:

Need ACKs

Set, but

not ACKed

Sendable

“usable window”

Offered, a.k.a. advertised, window
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Slow Start and Congestion 
Avoidance

 The advertised window size is a limit imposed by the receiver. But the sender doesn't 
necessarily need or want to send segments as rapidly as it can in an attempt to fill the 
receiver's window. 

 This is because the network may not be able to handle the segments as rapidly as the 
sender can send them. Intermediate routers may be bogged down or slow. If the 
sender dispatches segments too rapidly, the intermediate routers may drop them 
requiring that they be resent. 

 In the end, it would be faster and more bandwidth efficient to send them more slowly 
in the first place. 

 TCP employs two different techniques to determine how many segments can be sent 
before acknowledgement: slow start and congestion avoidance. 

 These techniques make use of a sender window, known as the congestion window. 
The congestion window can be no larger than the receiver's advertised window, but 
may be smaller. The congestion window size is known as cwnd. 
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Slow Start

 Initially, the congestion window is one segment large. The sender will send exactly 
one segment and wait for an acknowledgement. 

 Then the sender will send two segments. Each time an ACK is received, the 
congestion window will grow by two. (This results in 1,2,4,8,16,… growth)

 This growth will continue until the congestion window size reaches the smaller of a 
threshhold value, ssthresh and the advertised window size. 

 If the congestion window reaches the same size as the advertised window, it cannot 
grow anymore. 

 If the congestion window size reaches ssthresh, we want to grow more slowly -- we 
are less concerned about reaching a reasonable transmission rate than we are about 
suffering from congestion. For this reason, we switch to congestion avoidance. 

 The same is true if we are forced to retransmit a segment -- we take this as a bad sign 
and switch to congestion avoidance. 
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Congestion Avoidance

 Congestion avoidance is used to grow the congestion 
window slowly. 

 This is done after a segment has been lost or after ssthresh
has been reached. 

 Let's assume for a moment that ssthresh has been reached. 
At this point, we grow the congestion window linearly. This 
rate or growth is slower than it was before, and is more 
appropriate for tip-toeing our way to the network's capacity. 
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Congestion Avoidance

 Eventually, a packet will be lost. Although this could just be 
bad luck, we assume that it is the result of congestion -- we 
are injecting more packets into the network than we should. 

 As a result, we want to slow down the rate at whcih we inject 
packets into the network. We want to back off a lot, and then 
work our way to a faster rate. So we reset ssthresh and 
cwnd: 

ssthresh = MAX (2, cwnd/2) 

cwnd = 1
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After Congestion Avoidance
 After reducing the congestion window,  we reinvoke slow 

start. 

 This time it will start with a cwnd size of 1 and grow rapidly 
to half of the prior congestion window size. At that point 
congestion avoidance will be reinvoked to make tip-toe 
progress toward a more rapid transmission rate. 

 Eventually, a packet will be lost, ssthresh will be cut, cwnd 
will be reset to 1, and slow start will be reinvoked. 

 It is important to notice that ssthresh doesn't always fall -- it 
can grow. Since ssthresh is set to (cwnd/2), if the new value 
of cwnd is more than twice the old value of ssthresh, 
ssthresh will actually increase. 

 This makes sense, because it allows the transmission rate 
to slow down in response to a transient, but to make a 
substantial recovery rapidly. In this respect, the exponential 
growth rate of "slow start" is actually a "fast start". 
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An Example of Slow Start and 
Congestion Avoidance

timeout

Duplicate ACKCwnd/2

Cwnd/2
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Tahoe, Reno, Vegas, and Friends

 Early TCP revisions focused on functionality, e.g. Nagle 

 Recent TCP revisions focus on congestion. 

 It is easy to see that Slow-Start/Congestion avoidance, as described 
are neither provable optimal nor sophisticated heuristics. They are 
functional, intuitive – but clearly far from perfect – hacks

 There are many newer tweaks to improve performance. But, the 
philosophy doesn’t change

 Fundamentally, lost ACKS are interpreted as messages from the 
router to the sender that there is congestion and that it should slow 
down.

 Various revisions are more agile in that they don’t necessarily 
assume the first missing ACK is a sign of congestion, so they apply 
a reduced penalty until it becomes really clear. They also may 
change the details of how the slow down and speed up phases work. 
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Does This Really Work?
Can We do Better?

 Yes. It is far better than what we’d see if TCP were naïve to 
congestion. And, it is fully backward compatible. 

 We could probably do better if we added some explicit message, 
such as an ICMP message, that communicated congestion explicitly. 

 But, such a message is problematic. It adds work to routers that, as 
we discussed, are already super-busy and throughput limited

 But, more importantly, to whom would the router send such a 
message? It does not understand sessions or flows. 

 If it would send it to any sender in the queue (or recently in the 
queue), it would unnecessarily punish old senders – new senders 
could show up late and proceed at an unrestricted rate. 

 It would also generate wasted traffic to senders that would never 
send through it again, anyway. 

 And, what would the sender do with it? Slow down forever? For just 
that session? Cache it for “a while”? 

 But, what we’ve got clearly ain’t good.  This is an active research 
area!
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Evidence That It Works
The “New Sender Penalty”

 So, even if we’d explore the newest tweaks, we’d see that these are 
all hack-ish heuristics. And, we’ve discussed that none of this is 
provably optimal, if such a thing even exits. Intuitively, it is all better 
than nothing. But, is there any evidence that it is good?   

 Here’s something really cool. And, something that demonstrates an 
important lesson: It is hard to statically analyze and understand 
dynamic behavior. 

 Congested routers favor “old senders” and, in effect, penalize old 
ones. 
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Evidence That It Works
The “New Sender Penalty”,cont

 Here’s why: Because this mess actually works, old senders, those with long, 
established sessions, actually tend to mutually settle in on time slots and 
transmission rates. 

 This happens because if they show up and the router queue is full, the dropped 
segment gets resent at a random time. And, the algorithms leave the senders 
sending at approximately the same rate for a long time (the linear portion). 

 So, old senders bounce off each other until they find the right time and rate to 
send. New senders are more likely to show up to a full queue than the old 
senders which have reached a de facto agreement with each other as to the 
periodicity necessary to “jump right in” 

 If we assume that the queue is full, the total number of messages queued per 
unit time can equal no more than the total number of messages that can be 
dispatched. So, if the protocol is efficient, the old senders will optimize to find 
this – sending at the right rate and synchronizing to hit the queue at different 
times. 

 So, old senders tend to get through more often than new senders. And, we 
really do (sometimes) observe this in practice. Who’d have thunk it? 

 To defeat this, some routers drop preemptively, before the queue is full. They 
drop random messages from their queue. This hurts old senders, as new 
senders aren’t queued. It thereby gives new senders a chance. 
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Being Not-So-Nice

 It is surely possible to open multiple, simultaneous pipes between a sender 
and a receiver. 

 Since TCP maintains per-session state, each pipe has its own state variables –
its own window sizes, and its own understanding of congestion

 One can be anti-social and achiever higher data rates this way. For example, 
consider a large file. If we request it over a single pipe, our data rate will go up 
and down as per congestion control and slow start

 But, if we use a client that organizes itself to get various blocks of the file over 
multiple pipes, we won’t necessarily slow down as much. 

 First, even when slow, we might be able to scale linearly with multiple slow 
pipes

 Second, it is possible that, with enough slow pipes, we’ll be able to keep some 
going fast, while others have gotten knocked down and are growing their rate 
slowly. 

 This is especially true when the penalty was due to random loss, rather than 
actual congestion or when transient congestion has ended. 

 But, I say “might be able…”, because if the congestion is real, our anti-social 
behaviors may end up hurting everyone – including ourselves.  At the end of 
the day, there is only so fast one can suck through a straw. And, trying to suck 
faster just hurts (more resends=more congestion, equals bigger problem)


