
Transmission Control Protocol (TCP)

 Reliable

 Connection-oriented

 Point-to-point

 Full-duplex

 Streams, not messages

Initialization: 3 Way Handshake

Initiator Participant
SYN (Synchronization Sequence Number)
SYN = ISN + Port #

• The client begins it's active open by sending a SYN to the server. SYN

stands for "Synchronization Sequence Number", but it actually contains much

more.

• The SYN message contains the initial sequence number (ISN). This ISN is

the starting value for the sequence numbering that will be used by the client to

detect duplicate segments, to request the retransmission of segments, &c.

• The message also contains the port number. Whereas the hostname and IP

address name the machine, the port number names a particular processes. A

process on the server is associated with a particular port using bind().

Initialization: 3 Way Handshake

Initiator Participant
SYN + ACK of SYN

(ACK of SYN using initiator-ISN+1)

• The server performs the passive open, by sending its own ISN to the client.

It also sends an Acknowledgement (ACK) of the client's SYN, using the ISN

that the client sent plus one.

Initialization: 3 Way Handshake

Initiator Participant
ACK of SYN

(ACK of SYNC uses participant-ISN + 1)

• The last step is for the client to acknowledge the server’s SYN

Initialization: 3 way Handshake

Initiator Participant
SYN (Synchronization Sequence Number)
SYN = ISN + Port #

Initiator Participant
ACK of SYN

(ACK of SYNC uses participant-ISN + 1)

Initiator Participant
SYN + ACK of SYN

(ACK of SYN using initiator-ISN+1)

How and Why is the ISN Chosen?

 Why do we send the ISN, instead of just always start with 1?

 The answer to this is that we don't want to misinterpret an old segment. For example,
consider a short-lived client process that always talked to the same server. If the ISN's
would always start with one, a delayed segment from one connection might be
misinterpreted as the next segment for a newer instance of the same client/server-port
combination. By doing something more random, we reduce the bias toward low
sequence numbers, and reduce the likelihood of this type of situation.

 RFC 793 specifies that the ISN should be selected using a system-wide 32-bit counter
that is incremented every 4 microseconds. This approach provides a "moving target" that
makes segment number confusion unlikely.

 4.4BSD actually does something different. It increments the counter by 64K every half-
second and every time a connection is established. This amortizes to incrementing the
counter by one every 8 microseconds.

Connection Termination

 When either side of a TCP connection is done sending data, it sends a FIN
(finished) to the other side. When the other side receives the FIN, it passes an
EOF up the protocol stack to the application.

 Although TCP is a full-duplex protocol, the sending of a FIN doesn't tear
down the whole connection. Instead it simply indicates that the side sending
the FIN won't send any more data. It does not prevent the other side from
sending data. For this reason, it is known as a half-close. In some sense, a half-
closed connection is a half-duplex connection.

 Although TCP allows for this half-closed state, in practice, it is very rarely
used. For the most part, when one side closes a connection, the other side will
immediately do the same. It is also the case that both sides can concurrently
sends FINs. This situation, called a simultaneous close is perfectly legal and
acceptable.

One Side Other side
ACK of SYN

(ACK of SYNC uses participant-ISN + 1)

Half Close

One Side Other side
FIN

One Side Other side
ACK of FIN

Maximum Segment Life

 MSL stands for Maximum Segment Life.

 Basically, MSL is a constant that defines the maximum amount of time
that we believe a segment can remain in transit on the network.

 2MSL, twice this amount of time, is therefore an approximation of the
maximum round trip time.

 We wait 2MSL after sending the ACK of the FIN, before actually
closing the connection, to protect against a lost ACK.

 If the ACK is lost, the FIN will be retransmitted and received. The
ACK can then be resent and the 2MSL timer restarted.

What About Crashes, &c.

 But wait, if both sides need to close the connection, what happens if the power

fails on one side? Or a machine is shut off? Or the network goes down?

 Well, the answer to this is very simple: Nothing. Each side will maintain at

least a half-open connection until the other side sends a FIN. If the other side

never sends a FIN, barring a reboot, the connection will remain at least half-

open on the other side.

 What happens if neither process ever sends data? The answer to this is also

very simple: Nothing. Absolutely nothing is sent via TCP, unless data is being

sent.

TCP Keep-Alive Option

 Well, some people were as upset as you were by the idea that a half-open connection

could remain and consume resources forever, if the other side abruptly died or retired.

They successfully lobbied for the TCP Keepalive Option.

 This option is disabled by default, but can be enabled by either side. If it is enabled on a

host, the host will probe the other side, if the TCP connection has been idle for more

than a threshold amount of time.

 This timer is system-wide, not connection wide and the RFC states that, if enabled, it

must be no less than two hours.

 Many people (including your instructor) believe that this type of feature is not rightfully

in the jurisdiction of a transport layer protocol. We argue that this type of session

management is the rightful jurisdiction of the application or a session-level protocol.

 Please do realize that this is a religious issue for many and has received far more

discussion than it is probably worth. Independent of your beliefs, please don't forget that

the timer is system-wide -- this can be a pain and might even lead many keepalive-

worshipers opt for handling this within the applications.

Reset (RST)

 TCP views connections in terms of sockets. A popular author, Richard Stevens refers to these

as connections -- this is wrong, but has worked its way into the popular vernacular.

 A socket is defined as the following tuple:

<destination IP address, destination port #, source IP address, source port number>

 A RST is basically a suggestion to abort the connection.

 A reset will generally be sent by a host if it receives a segment that doesn't make sense.

Perhaps the host crashed and then received a segment for a port that is no longer in use.

 In this case, the RST would basically indicate, "No one here, but us chickens" and the side

that received the RST would assume a crash, close its end and roll-over or handle the error.

Transferring Data

• TCP operates by breaking data up into pieces known as segments.

• The TCP packet header contains many pieces of information. Among

them is the Maximum Segment Length (MSL) that the host is willing

to accept.

• In order to send data, TCP breaks it up into segments that are not

longer than the MSL.

Acknowledgement

• Fundamentally, TCP sends a segment of data, including the segment

number and waits for an ACK. But TCP tries to avoid the overhead

involved in acking every single segment using two techniques.

• TCP will wait up to 200mS before sending an ACK. The hope is that

within that 200 mS a segment will need to be sent the other way. If this

happens, the ACK will be sent with this segment of data. This type of

ACK is known as a piggyback ACK.

• Alternatively, no outgoing segment will be dispatched for the sender

within the 200mS window. In this case the ACK is send anyway. This

is known as a delayed ACK.

• Note: My memory is that the RFC actually says 500mS, but the

implementations that I remember use a 200mS timer. No big deal,

either way.

More About the ACKs

 By default, TCP uses cumulative acknowledgement unless a segment
arrives out of order, in which case TCP will use an immediate
acknowledgement of the last contiguous segment received. This tells
the sender which segment is expected. This is based on the assumption
that the likely case is that the missing segment was lost not delayed.

If this assumption is wrong, the first copy to arrive will be ACKed, the
subsequent copy will be discarded.

 Selective acknowledgement is an option that can be negotiated by the
sender and receiver if both support it. Instead of sending an integer
representing a single number, it uses the bits at a bit map, where each
bit represents a segment within the window: 1 for received, 0 for
absent. This gives the sender a much better understanding of which
segments need to be resent, mitigating the need to sent resent segments
already received, but located after the last contiguous segment.

Nagle Algorithm

 One interesting observation is that it takes just as much overhead to
send a small amount of data, such as one character, as it does a large
amount of data, such as a full MSL of data.

 The massive overhead associated with small segments can be
especially wasteful if the network is already bogged down.

 One approach to this situation is to delay small segments, collecting
them into a full segment, before sending. This approach reduces the
amount of non-data overhead, but it can unnecessarily delay small
segments if the network isn't bogged down.

 The compromise approach that is used with TCP was proposed by
Nagle. The Nagle Algorithm will send one small segment, but will
delay the others, collecting them into a larger segment, until the
segment that was sent is acknowledged. In other words, the Nagle
algorithm allows only one unacknowledged small segment to be send.

Nagle Algorithm

 This approach has the following nice property. If the network is very
bogged down, the ACK will take a long time. This will result in many
small segments being collected into a large segment, reducing the
overhead. If the network isn't bogged down, the ACK will arrive very
rapidly, allowing the next small segment to be sent without much
delay. If the network is fast, fewer small segments will be
concatenated, but who cares? The network isn't doing much else.

 In other words, the Nagle algorithm favors the sending of short
segments on a "fast network" and favors collecting them into larger
segments on a "slow network." This is a very nice property!

 There are certain circumstances where the Nagle approach should be
disabled. The classic example is the sending of mouse movements for
the X Window system. In this example, it is critically important to
dispatch the short packets representing mouse movements in a timely
way, independent of the load on the network. These packets need a
response in soft real-time to satisfy the human user.

4 5 6 7 8 9 10

The Sliding Window Model
 As we mentioned earlier, TCP is a sliding window protocol much like the example

protocol that we discussed last class. The sliding window model used by TCP is almost
identical to model used in the example.

 In the case of TCP, the receiver's window is known as the advertised window or the
offered window. The side of the window is advertised by the receiver as part of the TCP
header attached to each segment. By default, this size is usually 4096 bytes.

 The usable window is the portion of the advertised window that is available to receive
segments.

 The only significant difference is the one that we mentioned before: TCP uses a
cumulative ACK instead of a bit-mask.

1 2 3 11 13

Sent and

ACKed

Can’t send:

Need ACKs

Set, but

not ACKed

Sendable

“usable window”

Offered, a.k.a. advertised, window

Slow Start and Congestion Avoidance
 The advertised window size is a limit imposed by the receiver. But the sender

doesn't necessarily need or want to send segments as rapidly as it can in an
attempt to fill the receiver's window.

 This is because the network may not be able to handle the segments as rapidly
as the sender can send them. Intermediate routers may be bogged down or
slow. If the sender dispatches segments too rapidly, the intermediate routers
may drop them requiring that they be resent.

 In the end, it would be faster and more bandwidth efficient to send them more
slowly in the first place.

 TCP employs two different techniques to determine how many segments can
be sent before acknowledgement: slow start and congestion avoidance.

 These techniques make use of a sender window, known as the congestion
window. The congestion window can be no larger than the receiver's
advertised window, but may be smaller. The congestion window size is known
as cwnd.

Slow Start
 Initially, the congestion window is one segment large. The sender will send

exactly one segment and wait for an acknowledgement.

 Then the sender will send two segments. Each time an ACK is received, the
congestion window will grow by two. (This results in 1,2,4,8,16,… growth)

 This growth will continue until the congestion window size reaches the smaller
of a threshhold value, ssthresh and the advertised window size.

 If the congestion window reaches the same size as the advertised window, it
cannot grow anymore.

 If the congestion window size reaches ssthresh, we want to grow more slowly
-- we are less concerned about reaching a reasonable transmission rate than we
are about suffering from congestion. For this reason, we switch to congestion
avoidance.

 The same is true if we are forced to retransmit a segment -- we take this as a
bad sign and switch to congestion avoidance.

Congestion Avoidance

 Congestion avoidance is used to grow the congestion window slowly.

 This is done after a segment has been lost or after ssthresh has been

reached.

 Let's assume for a moment that ssthresh has been reached. At this

point, we grow the congestion window by the greater of 1 segment and

(1/cwnd). This rate or growth is slower than it was before, and is more

appropriate for tip-toeing our way to the network's capacity.

cwnd = cwnd + MAX (1, (1/cwnd))

Congestion Avoidance

 Eventually, a packet will be lost. Although this could just be bad luck,

we assume that it is the result of congestion -- we are injecting more

packets into the network than we should.

 As a result, we want to slow down the rate at whcih we inject packets

into the network. We want to back off a lot, and then work our way to

a faster rate. So we reset ssthresh and cwnd:

ssthresh = MAX (2, cwnd/2)

cwnd = 1

After Congestion Avoidance

 After reducing the congestion window, we reinvoke slow start.

 This time it will start with a cwnd size of 1 and grow rapidly to half of
the prior congestion window size. At that point congestion avoidance
will be reinvoked to make tip-toe progress toward a more rapid
transmission rate.

 Eventually, a packet will be lost, ssthresh will be cut, cwnd will be
reset to 1, and slow start will be reinvoked.

 It is important to notice that ssthresh doesn't always fall -- it can grow.
Since ssthresh is set to (cwnd/2), if the new value of cwnd is more than
twice the old value of ssthresh, ssthresh will actually increase.

 This makes sense, because it allows the transmission rate to slow down
in response to a transient, but to make a substantial recovery rapidly. In
this respect, the exponential growth rate of "slow start" is actually a
"fast start".

An Example of Slow Start and Congestion

Avoidance

timeout

Duplicate ACKCwnd/2

Cwnd/2

More Tweaking

 It is clear that the traditional TCP slow start and congestion avoidance

schemes assume that a single missing AC indicates congestion. But, it

could actually represent just dumb, bad luck – and impose a really

nasty penalty upon being unlucky.

 There are many newer variants, also options, that impose lesser

penalties earlier, in an attempt to balance the possibility of bad luck

against the harm caused by pumping segments into a suffocating

network.

