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Announcements

● Your first project is due February 10th!
● That is a Wednesday, so you have time to visit 

office hours before the due date and after in case 

you need to use a late day.
● Start early!
● Ask questions early!
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Recitation Mechanics

● These are your recitations

- We've got a schedule. It's flexible.

  - Ask questions, make comments...

 - 1 part lecture, 1 part “public office hours” (homework or 

project questions? Go for it!)
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Recitation Overview

● Today: Intro and Revision Control
● Makefiles
● Debugging
● Some project info
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Revision Control

● Before you write a line of code...
● Use subversion/CVS/git/etc
● Provides access to all old versions of your code

 - No more “cp file.cpp file.cpp.2010-01-29-oh-god-please-

let-this-work”



01/20/10  

What is revision control?

● A repository that stores each version
● You explicity “check out” and “check in” code and 

changes
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Why do I want it?

● Super-undo: go to arbitrary versions
 - you've managed to delete all your code? No 

problem.
● Track changes
● Concurrent development
● Snapshots
 - Turning in the assignment: just make a 

snapshot of your code and we will grade that 
snapshot. You can keep developing afterwards.
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The repository

● Master copy of the code is separate from what 

you work on
● You can have multiple working copies checked 

out (so can any partners or team members)
Repository

Your working copy

Your partner's copyYour laptop copy
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Check out and commit

● Explicitly synchronize with the repository

Repository

Your working copy

CommitCheckout / update
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Every revision is available

Current version

First version
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And you can see what changed
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Concurrent Development

● Each person checks out a copy
● Both can work at the same time without much 

fear of clobbering the other with a heavy club

 - changes are only visible on commits and 

updates
● What happens if both people edit a file at the 

same time and commit?



01/20/10  

Possibilities

● If Alice and Bob edit different parts of the file, 

their versions will likely be successfully merged. 

Yay SVN magic!
● If Alice and Bob's changes overlap, they will get 

a conflict.
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Resolving Conflicts

● Subversion will give you 3 files:

 - the original with conflict markers (<<<<)

 - the version you were editing

 - the latest version in the repository

● You can do several things:

 - keep your changes, discarding others

 - toss your changes

 - manually resolve



01/20/10  

Branches

● Multiple paths of development

 - Release 1.0 only gets security patches

 - “development” branch gets everything
● “tags” or “snapshots”

 - save a good known state
● Merging branches : read on your own
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Subversion commands

● svn checkout https://moo.cmcl.cs.cmu.edu/440/..
● svn commit
● svn update (svn up)

● svn add
● svn mkdir

● svn copy (create a branch or snapshot)
● svn diff (see the difference between two 
versions)

https://moo.cmcl.cs.cmu.edu/440/
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Sample walkthrough
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Turning stuff in
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Some additional thoughts

● Update, make, test, then commit
● Always update before starting work (just in case)
● Try not to break the checked in copy

 - making a lot of scary changes? Use a branch
● Don't use svn lock
● Revision control will save you lots of pain!!!
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Makefiles!!!!
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● If we have files:
 - prog.cpp – the main program file
 - lib.cpp – library .cpp file
 - lib.h – library header file

● g++ -c prog.cpp -o prog.o
● g++ -c lib.cpp -o lib.o
● g++ lib.o prog.o -o binary

Simple g++
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g++ flags

● -g : for debugging (so that gdb will show you line 

numbers)
● -Wall : all warning
● -Werror : treat warnings as errors
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Don't repeat yourself!

% g++ -g -Wall -Werror -c prog.cpp -o prog.o
% g++ -g -Wall -Werror -c lib.cpp -o lib.o
% g++ -g -Wall -Werror lib.o prog.o -o binary

 CXX = g++
 CFLAGS = -g -Wall -Werror
 OUTPUT = binary
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In general for a Makefile

target: dependency1 dependency2 …
Unix command (start line with a TAB)
Unix command

g++ lib.o prog.o -o binary

binary: lib.o prog.o
g++ lib.o prog.o -o binary
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Example
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Project 1!!!
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