
01/20/10

15-440 Recitation 1
SVN and Makefiles

Alex Katkova
Jason Zaman

CMU CS Spring 2010

01/20/10

Announcements

● Your first project is due February 10th!
● That is a Wednesday, so you have time to visit

office hours before the due date and after in case

you need to use a late day.
● Start early!
● Ask questions early!

01/20/10

Recitation Mechanics

● These are your recitations

- We've got a schedule. It's flexible.

 - Ask questions, make comments...

 - 1 part lecture, 1 part “public office hours” (homework or

project questions? Go for it!)

01/20/10

Recitation Overview

● Today: Intro and Revision Control
● Makefiles
● Debugging
● Some project info

01/20/10

Revision Control

● Before you write a line of code...
● Use subversion/CVS/git/etc
● Provides access to all old versions of your code

 - No more “cp file.cpp file.cpp.2010-01-29-oh-god-please-

let-this-work”

01/20/10

What is revision control?

● A repository that stores each version
● You explicity “check out” and “check in” code and

changes

01/20/10

Why do I want it?

● Super-undo: go to arbitrary versions
 - you've managed to delete all your code? No

problem.
● Track changes
● Concurrent development
● Snapshots
 - Turning in the assignment: just make a

snapshot of your code and we will grade that
snapshot. You can keep developing afterwards.

01/20/10

The repository

● Master copy of the code is separate from what

you work on
● You can have multiple working copies checked

out (so can any partners or team members)
Repository

Your working copy

Your partner's copyYour laptop copy

01/20/10

Check out and commit

● Explicitly synchronize with the repository

Repository

Your working copy

CommitCheckout / update

01/20/10

Every revision is available

Current version

First version

01/20/10

And you can see what changed

01/20/10

Concurrent Development

● Each person checks out a copy
● Both can work at the same time without much

fear of clobbering the other with a heavy club

 - changes are only visible on commits and

updates
● What happens if both people edit a file at the

same time and commit?

01/20/10

Possibilities

● If Alice and Bob edit different parts of the file,

their versions will likely be successfully merged.

Yay SVN magic!
● If Alice and Bob's changes overlap, they will get

a conflict.

01/20/10

Resolving Conflicts

● Subversion will give you 3 files:

 - the original with conflict markers (<<<<)

 - the version you were editing

 - the latest version in the repository

● You can do several things:

 - keep your changes, discarding others

 - toss your changes

 - manually resolve

01/20/10

Branches

● Multiple paths of development

 - Release 1.0 only gets security patches

 - “development” branch gets everything
● “tags” or “snapshots”

 - save a good known state
● Merging branches : read on your own

01/20/10

Subversion commands

● svn checkout https://moo.cmcl.cs.cmu.edu/440/..
● svn commit
● svn update (svn up)

● svn add
● svn mkdir

● svn copy (create a branch or snapshot)
● svn diff (see the difference between two
versions)

https://moo.cmcl.cs.cmu.edu/440/

01/20/10

Sample walkthrough

01/20/10

Turning stuff in

01/20/10

Some additional thoughts

● Update, make, test, then commit
● Always update before starting work (just in case)
● Try not to break the checked in copy

 - making a lot of scary changes? Use a branch
● Don't use svn lock
● Revision control will save you lots of pain!!!

01/20/10

Makefiles!!!!

01/20/10

● If we have files:
 - prog.cpp – the main program file
 - lib.cpp – library .cpp file
 - lib.h – library header file

● g++ -c prog.cpp -o prog.o
● g++ -c lib.cpp -o lib.o
● g++ lib.o prog.o -o binary

Simple g++

01/20/10

g++ flags

● -g : for debugging (so that gdb will show you line

numbers)
● -Wall : all warning
● -Werror : treat warnings as errors

01/20/10

Don't repeat yourself!

% g++ -g -Wall -Werror -c prog.cpp -o prog.o
% g++ -g -Wall -Werror -c lib.cpp -o lib.o
% g++ -g -Wall -Werror lib.o prog.o -o binary

 CXX = g++
 CFLAGS = -g -Wall -Werror
 OUTPUT = binary

01/20/10

In general for a Makefile

target: dependency1 dependency2 …
Unix command (start line with a TAB)
Unix command

g++ lib.o prog.o -o binary

binary: lib.o prog.o
g++ lib.o prog.o -o binary

01/20/10

Example

01/20/10

Project 1!!!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

