Pragmatic Programming

Techniques

Today’s presentation is largely stolen from Ricky Ho’s Blog posting
(But, any mistakes are assuredly mine!):

Sunday, August 29, 2010
Designing algorithms for Map Reduce

15-440/640 October 23, 2014 (Gregory Kesden, Presenting)

5] Ricky Ho
l | am a software architect and

consultant passionate in Distributed
and parallel computing, Machine learning and
Data mining, Saas and Cloud computing.

http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html

http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html

Map-Reduce Overview

User defined
combine() and

partition()

Spill when buifer is 803 full

1. Call combine(key, vaiue list)

2. Call partition{key) to determine partition
3. Sorirecords by partition, key

4. Write a spill file (index + data)

When Map is done,
Merge all spill files
irto one partition file

Immediate download
when mapperis done

Spill file = index +

data

key size

key data

P2 offset
P3 offset \.

key size

download to disk

Merge during parallei

key data

val data

Partition 1

Final merge before
calling reduce()

key size

key data

val data

Output
File
{HDFS)

User defined

record

Where’s The Hype?

e Parallelism is (mostly) in the maps, which are
independent (unsynchronized).

— O(n) becomes O(1) with parallelism
* Merge sorts are Merge Sorts

— O(n log n)
* Reduces are linear

— O(n)

“Embarrassingly Parallel”

* Some things are essentially only Maps
— Identity reduce
— Massively parallel
— No bottleneck

 Examples:
— Filter to retain or exclude only certain patterns
— Reduce data size by random sampling
— Convert format, e.g. bold to italics
— Flag bad data, e.g. negative, out of range, etc.

Split

Split

Split

Split

DFS

“Embarrassingly Parallel”

Part —| Part =€z

Part

N Part —’

Part =| Part =0

Part

N Part —;

FS @Map

FS@Reduce

5 RPC/Download

Filel

File2

File...

Filen

DFS

Sorting

 Map-Reduce is, in many ways, a distributed sorting
engine that can some useful work along the way

— The merge sort and reduce perform the sort
 We can leverage this if we actually want to sort
— |ldentity map
— |dentity reduce
* One possibly trick: Partition by range
— Simplifies merge.

——
Epartitiun{key} {

' range = (KEY MAX — EEY MIN) / NUM OF REDUCERS

reducer no = (key - EEY MIN) / range

return reducer no

__

Inverted Indexes

e Common index from key to location, e.g. word to
<fileName:line#>

* Map emits key, e.g. <word, fileName:line#>

* Reduce produces <key, list<metadata>>, e.g. <word,
list<fileName:line#>>

--

imap{key, container) {
' for each element in container {
element meta =
extract metadata(element, container)
emit (element, [container i1d, element metal)
5 I3
B

ireduce{element, container ids) {
. element stat =
compute stat (container ids)
emit (element, [element stat, container ids])

Simple Statistics

* Where operation is both commutative and associative
 Map does local computation

* Reduce forms global computation

* Examples: Min, max, count, sum (What about average?)

' class Mapper { ' class Reducer {
buffer reduce (key, list of local max) {
. global max = 0
map (key, number) { ; for local max in list of local max {
buffer.append (number) : if local max > global max {
if (buffer.is_full) { i global max = local max
max = compute max(buffer) ; }
emit(l, max) i 1 emit (1, global max)
} P

Pl B
2 |

iclass Combiner {

combine (key, list of local max) {
local max = maximum(list of local max)
emit (1, local max)

Histograms

* Divide into different intervals.

* Maps compute the count per interval.

* Reduce will compute the per interval.

* Note power is in map: Ability to classify in parallel

iclass Reducer {
reduce (interval, counts) {
total counts = 0

iclass Mapper {

interval start = [0, 20, 40, 60, 80] E £IE ZEEL ZOUEE L SEUEES
- | total counts += count

map (key, number) { i }
i = 0; 5 emit (interval, total cour
while (i < NO_OF INTERVALS) { i }
if (number < interval start([i]) {
emit (i, 1) 'class Combiner {
break : combine (interval, occurrence) {
1 {

emit (interval, occurrence.slze)

SELECT

— Implement in Map

Filter: result = SELECT c1, c2, c3, c4 FROM source WHERE conditions

e Aggregation: SELECT sum(c3) as s1, avg(c4) as s2 ... FROM result GROUP

BY c1, c2 HAVING conditions
— Implement in Reduce

' class Mapper {
map (k, rec) {

select fields =
rec.c2, rec.c3, rec.cd]

[rec.cl,
group fields =
[rec.cl, rec.c2]
1f (filter condition == true) {

¥

emit (group fields, select fields)

class Reducer {
reduce (group_ fields, list of rec) {

sl = 0

52 = 0

for each rec in list of rec {
51l += rec.c3
52 += rec.cd

Ij

32 = 32 / rec.size

if (having condition == true) ({
emit (group fields, [sl, s2])

}

Simple Join

imap{kl, rec) {
: emit (rec.key, [rec.typse, rec])

ireduce(kE, list of rec) {
list of typeR = []
list of typeB = []
for each rec in list of rec {

if (rec.type == '"A") {
list of typel.append(rec)
1 else {

list of typeB.append(rec)

Compute the catesian product
products = []
for recA in list of typel {
for recB in list of typeB {
emit (k2, [rechA, recB]l)

Kesden’s Additional Slides

* The next few slides are from me, rather than
the cited source for the rest of the
presentation.

Normalize Format For Join

 Map records to common Format
* |dentity reduce

* |dentity Map

* Reduce to form cross-product

* Filter to get results

Shortest Path

Form Graph as Adjacency List
— Map: <Node, <Node, Distance>> for each adjacency
— Reduce:<Node, Shortest<Node, Distance>>

Work from each node in parallel
Map
— Node n as a key and (D, points-to) as its value
e Dis the distance form the start

* Points-to is a list of Nodes reachable from n, initially direct
adjacencies

* Emits all points reachable from n via each node in points-to
Reduce
— Emits one Node n for each key, the one with the shortest D

Repeat Map and Reduce phases until no shorter distances found
(nothing learned, nothing can be learned, convergance)

