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Amdahl’s Law 

 We parallelize our programs in order to run them faster 

 

 How much faster will a parallel program run? 

 

 Suppose that the sequential execution of a program takes T1 time units 

and the parallel execution on p processors takes Tp time units 

 

 Suppose that out of the entire execution of the program, s fraction of it is 

not parallelizable while 1-s fraction is parallelizable 

 

 Then the speedup (Amdahl’s formula): 
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Amdahl’s Law: An Example 

 Suppose that 80% of you program can be parallelized and that you 

use 4 processors to run your parallel version of the program 

 

 The speedup you can get according to Amdahl is: 

 

 

 

 

 Although you use 4 processors you cannot get a speedup more than 

2.5 times (or 40% of the serial running time) 
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Real Vs. Actual Cases 

 Amdahl’s argument is too simplified to be applied to real cases 

 

 When we run a parallel program, there are a communication 

overhead and a workload imbalance among processes in general 
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Guidelines 

 In order to efficiently benefit from parallelization, we 

ought to follow these guidelines: 

 

1. Maximize the fraction of our program that can be parallelized  

 

2. Balance the workload of parallel processes 

 

3. Minimize the time spent for communication 
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Parallel Computer Architectures 

 We can categorize the architecture of parallel computers in terms of 

two aspects: 

 

 Whether the memory is physically centralized or distributed 

 Whether or not the address space is shared 
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Symmetric Multiprocessor 

 Symmetric Multiprocessor (SMP) architecture uses shared system 

resources that can be accessed equally from all processors 

 

 

 

 

 

 

 

 

 

 A single OS controls the SMP machine and it schedules processes 

and threads on processors so that the load is balanced 
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Massively Parallel Processors 

 Massively Parallel Processors (MPP) architecture consists of nodes 

with each having its own processor, memory and I/O subsystem 

 

 

 

 

 

 

 

 

 

 An independent OS runs at each node 
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Non-Uniform Memory Access 

 Non-Uniform Memory Access (NUMA) architecture machines are 

built on a similar hardware model as MPP 

 

 NUMA typically provides a shared address space to applications 

using a hardware/software directory-based coherence protocol 

 

 The memory latency varies according to whether you access 

memory directly (local) or through the interconnect (remote). Thus 

the name non-uniform memory access 

 

 As in an SMP machine, a single OS controls the whole system 
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Models of Parallel Programming 

 What is a parallel programming model? 

 

 A programming model is an abstraction provided by the hardware  

to programmers 

 

 It determines how easily programmers can specify their algorithms into 

parallel unit of computations (i.e., tasks) that the hardware understands 

 

 It determines how efficiently parallel tasks can be executed on the hardware  

 

 Main Goal: utilize all the processors of the underlying architecture 

(e.g., SMP, MPP, NUMA) and minimize the elapsed time of  

your program 
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Traditional Parallel Programming 
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Shared Memory Model 

 In the shared memory programming model, the abstraction is that 

parallel tasks can access any location of the memory 

 

 Parallel tasks can communicate through reading and writing 

common memory locations 

 

 This is similar to threads from a single process which share a single 

address space 

 

 Multi-threaded programs (e.g., OpenMP programs) are the best fit 

with shared memory programming model 
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Shared Memory Model 
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Shared Memory Example 

for (i=0; i<8; i++) 

  a[i] = b[i] + c[i]; 

sum = 0; 

for (i=0; i<8; i++) 

  if (a[i] > 0) 

    sum = sum + a[i]; 

Print sum; 

begin parallel // spawn a child thread 

private int start_iter, end_iter, i; 

shared int local_iter=4, sum=0; 

shared double sum=0.0, a[], b[], c[]; 

shared lock_type mylock; 
 

start_iter = getid() * local_iter; 

end_iter = start_iter + local_iter; 

for (i=start_iter; i<end_iter; i++) 

  a[i] = b[i] + c[i]; 

barrier; 

 

for (i=start_iter; i<end_iter; i++) 

  if (a[i] > 0) { 

    lock(mylock); 

      sum = sum + a[i]; 

    unlock(mylock); 

  } 

barrier;    // necessary 

 

end parallel // kill the child thread 

Print sum; 

Sequential 

Parallel 



Traditional Parallel Programming 

Models 
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Message Passing Model 

 In message passing, parallel tasks have their own local memories 

 

 One task cannot access another task’s memory 

 

 Hence, to communicate data they have to rely on explicit messages 

sent to each other 

 

 This is similar to the abstraction of processes which do not share an 

address space 

 

 MPI programs are the best fit with message passing  

programming model 
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Message Passing Model 
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Message Passing Example 

for (i=0; i<8; i++) 

  a[i] = b[i] + c[i]; 

sum = 0; 

for (i=0; i<8; i++) 

  if (a[i] > 0) 

    sum = sum + a[i]; 

Print sum; 

Sequential 

Parallel 

id = getpid();  

local_iter = 4; 

start_iter = id * local_iter;   

end_iter = start_iter + local_iter; 

 

if (id == 0) 

  send_msg (P1, b[4..7], c[4..7]); 

else  

  recv_msg (P0, b[4..7], c[4..7]); 

 

for (i=start_iter; i<end_iter; i++) 

  a[i] = b[i] + c[i]; 

 

local_sum = 0; 

for (i=start_iter; i<end_iter; i++) 

  if (a[i] > 0) 

    local_sum = local_sum + a[i]; 

if (id == 0) { 

  recv_msg (P1, &local_sum1); 

  sum = local_sum + local_sum1; 

  Print sum; 

} 

else  

  send_msg (P0, local_sum); 



Shared Memory Vs. Message Passing 

 Comparison between shared memory and message passing 

programming models: 
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SPMD and MPMD 

 When we run multiple processes with message-passing, there are 

further categorizations regarding how many different programs are 

cooperating in parallel execution 

 

 We distinguish between two models: 

 

1. Single Program Multiple Data (SPMD) model 

 

2. Multiple Programs Multiple Data (MPMP) model 
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SPMD 

 In the SPMD model, there is only one program and each process 

uses the same executable working on different sets of data 
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MPMD 

 The MPMD model uses different programs for different processes, 

but the processes collaborate to solve the same problem 

 

 MPMD has two styles, the master/worker and the coupled analysis 
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3 Key Points 

 To summarize, keep the following 3 points in mind: 

 

 The purpose of parallelization is to reduce the time spent  

for computation 

 

 Ideally, the parallel program is p times faster than the sequential 

program, where p is the number of processes involved in the parallel 

execution, but this is not always achievable 

 

 Message-passing is the tool to consolidate what parallelization has 

separated. It should not be regarded as the parallelization itself 
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Message Passing Interface 

 In this part, the following concepts of MPI will  

be described: 

 
 Basics 

 Point-to-point communication 

 Collective communication 
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What is MPI? 

 The Message Passing Interface (MPI) is a message passing library 

standard  for writing message passing programs 

 

 The goal of MPI is to establish a portable, efficient, and flexible 

standard for message passing 

 

 By itself, MPI is NOT a library - but rather the specification of what 

such a library should be 

 

 MPI is not an IEEE or ISO standard, but has in fact, become the 

industry standard for writing message passing programs on  

HPC platforms 
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Reasons for using MPI 
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Programming Model 

 MPI is an example of a message passing programming model 

 

 MPI is now used on just about any common parallel architecture 

including MPP, SMP clusters, workstation clusters and 

heterogeneous networks 

 

 With MPI the programmer is responsible for correctly identifying parallelism 

and implementing parallel algorithms using MPI constructs 

 

 

 

 

 

 

 

 

32 



Communicators and Groups 

 MPI uses objects called communicators and groups to define which 

collection of processes may communicate with each other to solve a 

certain problem 

 

 Most MPI routines require you to specify a communicator  

as an argument 

 

 The communicator MPI_COMM_WORLD is often used in calling 

communication subroutines 

 

 MPI_COMM_WORLD is the predefined communicator that includes 

all of your MPI processes 
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Ranks 

 Within a communicator, every process has its own unique, integer 

identifier referred to as rank, assigned by the system when the 

process initializes 

 

 A rank is sometimes called a task ID. Ranks are contiguous and 

begin at zero 

 

 Ranks are used by the programmer to specify the source and 

destination of messages 

 

 Ranks are often also used conditionally by the application to control 

program execution (e.g., if rank=0 do this / if rank=1 do that) 
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Multiple Communicators 

 It is possible that a problem consists of several sub-problems where 

each can be solved concurrently 

 

 This type of application is typically found in the category of MPMD 

coupled analysis 

 

 We can create a new communicator for each sub-problem as a 

subset of an existing communicator 

  

 MPI allows you to achieve that by using MPI_COMM_SPLIT 
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Example of Multiple 

Communicators 
 Consider a problem with a fluid dynamics part and a structural 

analysis part, where each part can be computed in parallel 
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