
Distributed Systems

CS 15-440/640

 Programming Models

Borrowed and adapted from our good friends at

CMU-Doha, Qatar

Majd F. Sakr, Mohammad Hammoud andVinay Kolar

1

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface
(MPI)

MapReduce

Why
parallelism?

Amdahl’s Law

 We parallelize our programs in order to run them faster

 How much faster will a parallel program run?

 Suppose that the sequential execution of a program takes T1 time units

and the parallel execution on p processors takes Tp time units

 Suppose that out of the entire execution of the program, s fraction of it is

not parallelizable while 1-s fraction is parallelizable

 Then the speedup (Amdahl’s formula):

3

Amdahl’s Law: An Example

 Suppose that 80% of you program can be parallelized and that you

use 4 processors to run your parallel version of the program

 The speedup you can get according to Amdahl is:

 Although you use 4 processors you cannot get a speedup more than

2.5 times (or 40% of the serial running time)

4

Real Vs. Actual Cases

 Amdahl’s argument is too simplified to be applied to real cases

 When we run a parallel program, there are a communication

overhead and a workload imbalance among processes in general

20 80

20 20

Process 1

Process 2

Process 3

Process 4

Serial

Parallel

1. Parallel Speed-up: An Ideal Case

Cannot be parallelized

Can be parallelized

20 80

20 20

Process 1

Process 2

Process 3

Process 4

Serial

Parallel

2. Parallel Speed-up: An Actual Case

Cannot be parallelized

Can be parallelized

Load Unbalance

Communication overhead

Guidelines

 In order to efficiently benefit from parallelization, we

ought to follow these guidelines:

1. Maximize the fraction of our program that can be parallelized

2. Balance the workload of parallel processes

3. Minimize the time spent for communication

6

Objectives

Discussion on Programming Models

Why
parallelism?

Parallel
computer
architectures

Traditional
models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface
(MPI)

MapReduce

Parallel
computer
architectures

Parallel Computer Architectures

 We can categorize the architecture of parallel computers in terms of

two aspects:

 Whether the memory is physically centralized or distributed

 Whether or not the address space is shared

8

M
e
m

o
ry

Address Space

Shared Individual

Centralized SMP (Symmetric Multiprocessor) N/A

Distributed NUMA (Non-Uniform Memory Access) MPP (Massively

Parallel Processors)

M
e
m

o
ry

Address Space

Shared Individual

Centralized SMP (Symmetric Multiprocessor) N/A

Distributed NUMA (Non-Uniform Memory Access) MPP (Massively

Parallel Processors)

M
e
m

o
ry

Address Space

Shared Individual

Centralized SMP (Symmetric Multiprocessor) N/A

Distributed NUMA (Non-Uniform Memory Access) MPP (Massively

Parallel Processors)

M
e
m

o
ry

Address Space

Shared Individual

Centralized SMP (Symmetric Multiprocessor) N/A

Distributed NUMA (Non-Uniform Memory Access) MPP (Massively

Parallel Processors)

M
e
m

o
ry

Address Space

Shared Individual

Centralized UMA – SMP (Symmetric Multiprocessor) N/A

Distributed NUMA (Non-Uniform Memory Access) MPP (Massively

Parallel Processors)

Symmetric Multiprocessor

 Symmetric Multiprocessor (SMP) architecture uses shared system

resources that can be accessed equally from all processors

 A single OS controls the SMP machine and it schedules processes

and threads on processors so that the load is balanced

9

Processor

Cache

Bus or Crossbar Switch

Memory I/O

Processor

Cache

Processor

Cache

Processor

Cache

Massively Parallel Processors

 Massively Parallel Processors (MPP) architecture consists of nodes

with each having its own processor, memory and I/O subsystem

 An independent OS runs at each node

10

Processor

Cache

Interconnection Network

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

Processor

Cache

Memory I/O

Bus

Non-Uniform Memory Access

 Non-Uniform Memory Access (NUMA) architecture machines are

built on a similar hardware model as MPP

 NUMA typically provides a shared address space to applications

using a hardware/software directory-based coherence protocol

 The memory latency varies according to whether you access

memory directly (local) or through the interconnect (remote). Thus

the name non-uniform memory access

 As in an SMP machine, a single OS controls the whole system

11

Objectives

Discussion on Programming Models

Why
parallelizing our
programs?

Parallel
computer
architectures

Traditional
Models of
parallel
programming

Examples of
parallel
processing

Message
Passing
Interface
(MPI)

MapReduce

Traditional
Models of
parallel
programming

Models of Parallel Programming

 What is a parallel programming model?

 A programming model is an abstraction provided by the hardware

to programmers

 It determines how easily programmers can specify their algorithms into

parallel unit of computations (i.e., tasks) that the hardware understands

 It determines how efficiently parallel tasks can be executed on the hardware

 Main Goal: utilize all the processors of the underlying architecture

(e.g., SMP, MPP, NUMA) and minimize the elapsed time of

your program

13

Traditional Parallel Programming

Models

14

Parallel Programming Models

Shared Memory Message Passing Message Passing

Shared Memory Model

 In the shared memory programming model, the abstraction is that

parallel tasks can access any location of the memory

 Parallel tasks can communicate through reading and writing

common memory locations

 This is similar to threads from a single process which share a single

address space

 Multi-threaded programs (e.g., OpenMP programs) are the best fit

with shared memory programming model

15

Shared Memory Model

16

Process

S1

P1

P2

P3

P4

S2

Si = Serial

Pj = Parallel
T

im
e

Single Thread

S1

T
im

e

P1 P2 P3 P3

S2 Shared Address Space

Multi-Thread

Process

Spawn

Join

Shared Memory Example

for (i=0; i<8; i++)

 a[i] = b[i] + c[i];

sum = 0;

for (i=0; i<8; i++)

 if (a[i] > 0)

 sum = sum + a[i];

Print sum;

begin parallel // spawn a child thread

private int start_iter, end_iter, i;

shared int local_iter=4, sum=0;

shared double sum=0.0, a[], b[], c[];

shared lock_type mylock;

start_iter = getid() * local_iter;

end_iter = start_iter + local_iter;

for (i=start_iter; i<end_iter; i++)

 a[i] = b[i] + c[i];

barrier;

for (i=start_iter; i<end_iter; i++)

 if (a[i] > 0) {

 lock(mylock);

 sum = sum + a[i];

 unlock(mylock);

 }

barrier; // necessary

end parallel // kill the child thread

Print sum;

Sequential

Parallel

Traditional Parallel Programming

Models

18

Parallel Programming Models

Shared Memory Message Passing Shared Memory

Message Passing Model

 In message passing, parallel tasks have their own local memories

 One task cannot access another task’s memory

 Hence, to communicate data they have to rely on explicit messages

sent to each other

 This is similar to the abstraction of processes which do not share an

address space

 MPI programs are the best fit with message passing

programming model

19

Message Passing Model

20

S1

P1

P2

P3

P4

S2

S = Serial

P = Parallel

T
im

e

Single Thread

Process 0

S1

P1

S2

T
im

e

Message Passing

Node 1

Process 1

S1

P1

S2

Node 2

Process 2

S1

P1

S2

Node 3

Process 3

S1

P1

S2

Node 4

Data transmission over the Network

Process

Message Passing Example

for (i=0; i<8; i++)

 a[i] = b[i] + c[i];

sum = 0;

for (i=0; i<8; i++)

 if (a[i] > 0)

 sum = sum + a[i];

Print sum;

Sequential

Parallel

id = getpid();

local_iter = 4;

start_iter = id * local_iter;

end_iter = start_iter + local_iter;

if (id == 0)

 send_msg (P1, b[4..7], c[4..7]);

else

 recv_msg (P0, b[4..7], c[4..7]);

for (i=start_iter; i<end_iter; i++)

 a[i] = b[i] + c[i];

local_sum = 0;

for (i=start_iter; i<end_iter; i++)

 if (a[i] > 0)

 local_sum = local_sum + a[i];

if (id == 0) {

 recv_msg (P1, &local_sum1);

 sum = local_sum + local_sum1;

 Print sum;

}

else

 send_msg (P0, local_sum);

Shared Memory Vs. Message Passing

 Comparison between shared memory and message passing

programming models:

22

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Aspect Shared Memory Message Passing

Communication Implicit (via loads/stores) Explicit Messages

Synchronization Explicit Implicit (Via Messages)

Hardware Support Typically Required None

Development Effort Lower Higher

Tuning Effort Higher Lower

Objectives

Discussion on Programming Models

Why
parallelizing our
programs?

Parallel
computer
architectures

Examples of
parallel
processing

Message
Passing
Interface
(MPI)

MapReduce

Traditional
Models of
parallel
programming

Examples of
parallel
processing

SPMD and MPMD

 When we run multiple processes with message-passing, there are

further categorizations regarding how many different programs are

cooperating in parallel execution

 We distinguish between two models:

1. Single Program Multiple Data (SPMD) model

2. Multiple Programs Multiple Data (MPMP) model

24

SPMD

 In the SPMD model, there is only one program and each process

uses the same executable working on different sets of data

25

a.out

Node 1 Node 2 Node 3

MPMD

 The MPMD model uses different programs for different processes,

but the processes collaborate to solve the same problem

 MPMD has two styles, the master/worker and the coupled analysis

a.out

Node 1 Node 2 Node 3

b.out a.out

Node 1

b.out

Node 2

c.out

Node 3

1. MPMD: Master/Slave 2. MPMD: Coupled Analysis

a.out= Structural Analysis,

b.out = fluid analysis and

c.out = thermal analysis

Example

3 Key Points

 To summarize, keep the following 3 points in mind:

 The purpose of parallelization is to reduce the time spent

for computation

 Ideally, the parallel program is p times faster than the sequential

program, where p is the number of processes involved in the parallel

execution, but this is not always achievable

 Message-passing is the tool to consolidate what parallelization has

separated. It should not be regarded as the parallelization itself

27

Objectives

Discussion on Programming Models

Why
parallelizing our
programs?

Parallel
computer
architectures

Examples of
parallel
processing

Message
Passing
Interface
(MPI)

MapReduce

Traditional
Models of
parallel
programming

Message
Passing
Interface
(MPI)

Message Passing Interface

 In this part, the following concepts of MPI will

be described:

 Basics

 Point-to-point communication

 Collective communication

29

What is MPI?

 The Message Passing Interface (MPI) is a message passing library

standard for writing message passing programs

 The goal of MPI is to establish a portable, efficient, and flexible

standard for message passing

 By itself, MPI is NOT a library - but rather the specification of what

such a library should be

 MPI is not an IEEE or ISO standard, but has in fact, become the

industry standard for writing message passing programs on

HPC platforms

30

Reasons for using MPI

31

Reason Description

Standardization MPI is the only message passing library which can be

considered a standard. It is supported on virtually all

HPC platforms

Reason Description

Standardization MPI is the only message passing library which can be

considered a standard. It is supported on virtually all

HPC platforms

Portability There is no need to modify your source code when you port

your application to a different platform that supports the

MPI standard

Reason Description

Standardization MPI is the only message passing library which can be

considered a standard. It is supported on virtually all

HPC platforms

Portability There is no need to modify your source code when you port

your application to a different platform that supports the

MPI standard

Performance Opportunities Vendor implementations should be able to exploit native

hardware features to optimize performance

Reason Description

Standardization MPI is the only message passing library which can be

considered a standard. It is supported on virtually all

HPC platforms

Portability There is no need to modify your source code when you port

your application to a different platform that supports the

MPI standard

Performance Opportunities Vendor implementations should be able to exploit native

hardware features to optimize performance

Functionality Over 115 routines are defined

Reason Description

Standardization MPI is the only message passing library which can be

considered a standard. It is supported on virtually all

HPC platforms

Portability There is no need to modify your source code when you port

your application to a different platform that supports the

MPI standard

Performance Opportunities Vendor implementations should be able to exploit native

hardware features to optimize performance

Functionality Over 115 routines are defined

Availability A variety of implementations are available, both vendor and

public domain

Programming Model

 MPI is an example of a message passing programming model

 MPI is now used on just about any common parallel architecture

including MPP, SMP clusters, workstation clusters and

heterogeneous networks

 With MPI the programmer is responsible for correctly identifying parallelism

and implementing parallel algorithms using MPI constructs

32

Communicators and Groups

 MPI uses objects called communicators and groups to define which

collection of processes may communicate with each other to solve a

certain problem

 Most MPI routines require you to specify a communicator

as an argument

 The communicator MPI_COMM_WORLD is often used in calling

communication subroutines

 MPI_COMM_WORLD is the predefined communicator that includes

all of your MPI processes

33

Ranks

 Within a communicator, every process has its own unique, integer

identifier referred to as rank, assigned by the system when the

process initializes

 A rank is sometimes called a task ID. Ranks are contiguous and

begin at zero

 Ranks are used by the programmer to specify the source and

destination of messages

 Ranks are often also used conditionally by the application to control

program execution (e.g., if rank=0 do this / if rank=1 do that)

34

Multiple Communicators

 It is possible that a problem consists of several sub-problems where

each can be solved concurrently

 This type of application is typically found in the category of MPMD

coupled analysis

 We can create a new communicator for each sub-problem as a

subset of an existing communicator

 MPI allows you to achieve that by using MPI_COMM_SPLIT

35

Example of Multiple

Communicators
 Consider a problem with a fluid dynamics part and a structural

analysis part, where each part can be computed in parallel

Rank=0

Rank=0

Comm_Fluid

Rank=1

Rank=1

Rank=2

Rank=2

Rank=3

Rank=3

Rank=0

Rank=4

Comm_Struct

Rank=1

Rank=5

Rank=2

Rank=6

Rank=3

Rank=7

MPI_COMM_WORLD

 Ranks within MPI_COMM_WORLD are printed in red

 Ranks within Comm_Fluid are printed with green

 Ranks within Comm_Struct are printed with blue

