

15-440 DFS and More

● Part 1 Due tonight
● Make sure you copy it to tags/part1 and

COMMIT!
● We will grade for completion and correctness.
● We will likely save style grading for the very end.
● Midterm next week!

Announcements

Today

● Parts 2 and 3
● Homework Review (if we have time – answers

should go out soon)
● Questions

So far

● Lock server – acquire/release arbitrary lock ids
● RPC at-most-once
● Questions?

Next up: Part 2

● Extent Server
● FUSE
● Semantics of Filesystem calls

YFS
● One extent server
● One lock server
● Integrates with FUSE
● Clients

Extent Server

● You don't have to worry about storing content on

disk
● Use a map:

map<inode, std::string>
● All yfs_clients synchronize with the same

extent_server

Structure

FUSE

YFS_CLIENT

EXTENT_CLIENT EXTENT_SERVER
RPC

Example:getattr
In yfs_client:
 if (ec->getattr(inum, a) != extent_protocol::OK) {
 r = IOERR;
 goto release;
 }

In extent_client:
 ret = cl->class(extent_protocol::getattr, eid, attr);

In extent_server:
if(attrmap.find(id) != attrmap.end()){

a = attrmap[id];
return extent_protocol::OK;

}else{
return extent_protocol::NOENT;

}

Your job

● Extend extent_server to support:
● put(id, str)
● get(id)
● remove(id)

● extent_protocol.h, extent_smain.cc
● ctime/atime/mtime

Data formats

● Directories on the extent server maintain a mapping of

filenames to inode numbers
● For example, if the root node (1) contains the files “file1” and

“file2”
● The directory entry might look like this:

file1:2349234

file2:2408280

● You get to choose to how to represent this mapping

Metadata

● atime: access time
● updated when file contents accessed
● set to 0 at file creation

● mtime: modification time
● updated when file contents modified

● ctime: change time
● updated when file metadata modified

FUSE

In fuse.cc::main

fuseserver_oper.getattr = fuseserver_getattr;
fuseserver_oper.statfs = fuseserver_statfs;
fuseserver_oper.readdir = fuseserver_readdir;
fuseserver_oper.lookup = fuseserver_lookup;
fuseserver_oper.create = fuseserver_create;
fuseserver_oper.mknod = fuseserver_mknod;

CREATE/MKNOD

● Generated inode number (rand())
● Files have most significant bit set to 1
● Directories have most significant bit set to 0

(later lab)
● Create file at extent_server
● Add the name to inode mapping at the server

Lookup

● Input: filename, parent inode
● Look through parent directory list
● Find the inode that maps from filename
● Call getattr on that inode
● Fill in return structure (fuse_entry_param)

Readdir

● Given inode number for a directory
● Get the list of mappings from that directory
● For each filename:inode pair

call dirbuf_add(...) //examples in code

At this point

● You should be able to create empty files in the

root directory and run ls
● You're not yet storing files (that comes soon)

Testing

● ./start.sh
● ./test-lab-2.pl
● ./stop.sh

● test-lab-2.pl creates a bunch of files and then
tests whether they are there

Part 3

● Open
● Read
● Write
● Setattr

Open

● OPEN should simply check if the file exists and

return fuse_reply_open(req, fi) or an error

otherwise
● It doesn't need to fill in any parameters

Read/Write

● Straightforward
● Read:

fuseserver_read(fuse_req_t req, fuse_ino_t ino,
size_t size, off_t off, struct fuse_file_info *fi)

● It means: read size bytes starting at offset off
from file with inode number ino

Setattr

● See handout
● All you have to worry about is the size of the file,

but you are welcome to implement other attribute

changes if you wish

Questions about the project?

Homework 1 Review

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

