
Map - Reduce
Distributed Systems: 15-440/640

Carnegie Mellon University

● Crash-Course on Hadoop and Quick-Review of Concepts

● Quick-look at the Big-Components

● Checklist of the “must-haves” for this project

● Answer some FAQs asked during the TA office hours

● General expectations

● Question and Answers

Purpose of this Session

Map-Reduce Overview - Hadoop

DFS Overview - HDFS

DFS Overview - HDFS

Note: You may have more than one output file (corresponding to each reducer)

Map-Reduce Operational Overview

● Big-Data processing

● Increased utilization of commodity infrastructure

● Similar things can be done in parallel :)

● Scaled-Out, Distributed

● Fault-Tolerant, Replicated

● Hip and Cool !!! Really

Motivations for Map-Reduce

Elements of Concern - Architecture
Communication Information Interaction

(User
Experience)

Computation/
Processing

Failure
Management

Central Master a.
k.a Job Tracker

Local Master
a.k.a Task Tracker

Information about
the chunks/splits
of the file

Information about
the nodes

Ability to submit a
job

Common structure
to take mapper
and reducer code
of the application
programmer

Auto-replicate of
file chunk if the
node fails to
maintain the RF

Status and Health
Checking of i.
Nodes and
ii. Map Tasks
ii. Reduce Tasks

Global State:
i. Status of Map
Tasks
ii. Status of
Reduce Tasks
iii. Status of Job

Ability to pull print
about the job

Automatically
send the his
source-code
across the nodes
where file-chunks
are available

Re-start the
map/reduce task if
one fails

Threshold on re-
attempts

Scheduling the
tasks
appropriately

Splitting the input
file into chunks
(Data actually
needs to be sent
and replicated)

Local State:
i. Status of the
Mapper
ii. Status of
Reducer
iii. Intermediate
files and I/O
handling

Put yourself in the
system admin’s
shoes who is
managing this
cluster

Data-Locality
knowledge for the
master
Schedule some
work as soon as
something slot is
free

How many slots?

Status reporting if
a job failure

Capturing and
providing as much
as relevant
information to
application
programmer

Required Deliverables

● Distributed File System

● Map reduce framework

● Administration/Bootstrapping tool or instructions

● 2 Examples to showcase your framework

● Detailed Report

Distributed File System

● Don’t complicate things!

● Think of a way to:

○ Split large files into chunks

○ Transfer the chunks to different hosts

○ Track where chunks exist.

○ Maintaining a replication factor for fault tolerance

Distributed File System (Cont.)

Important:

● Use of afs after initial bootstrapping for your framework
is not allowed!

● For all purposes think of it as each node having their
own local storage communicating through your dfs
framework.

Map-Reduce Framework

● Hadoops Map-Reduce Architecture - a good starting
point.

● Refer the Word Count Example

● The Same map reduce code works on all file chunks on
same/different hosts

● Maximize efficiency by running jobs on locally available
files

Map-Reduce Framework (Cont.)
Important:

● Fault Tolerance is Expected.

What happens
○ if mapper fails?
○ if reducer fails?

● Config file should contain all the parameter your
framework can support.
○ Some essential parameters like Input format, output

format, input path, output path, mapper class and
reducer class are expected

What you don't need to do

● You do *not* need to exactly emulate Hadoop or HDFS.

● No need for consistency, conflict resolution etc in your
DFS.

Report checklist
“Extremely important part of the project”. Much more
important than you think!

● Things we are looking for here:
○ Overall design and implementation of the MapReduce framework

○ Design and implementation of the distributed framework

○ Programmer API

○ Replica creation

○ Interaction between MapReduce and distributed file system

○ Work conservation and data location awareness

○ Launching and relaunching of Mappers and Reducers

○ Various Tradeoffs in your design.

○ Build instructions. If these are missing, we can’t do much. Please do not give us
just jars, we need to be able to build your project while testing. Also, do not give us
just jars of your example. We need the source code for those too.
“The Submitted code must work on afs. Please test it in afs before submitting”

Common Questions

● Do we need to merge output of reducers?
○ No, 1 output per reducer.

● Do we need to build a distributed file system? If yes,
how much?
○ Refer previous decks

● Hey hadoop does it this way, is that what we are
supposed to do?
○ No, You are welcome to use your own design.

● Fixed records - what does that mean?
○ Simplest case - Line of string.

● Do I need a shell on each node?
○ No, its up to your design

References

Map reduce by Google http://static.googleusercontent.com/media/research.
google.com/en/us/archive/mapreduce-osdi04.pdf

http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf

