
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html 

Today’s presentation is largely stolen from Ricky Ho’s Blog posting 
(But, any mistakes are assuredly mine!): 

 
Sunday, August 29, 2010 

Designing algorithms for Map Reduce 

15-440/640 October 29, 2013 (Gregory Kesden, Presenting)  

http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html


Map-Reduce Overview 



• Parallelism is (mostly) in the maps, which are 
independent (unsynchronized). 

– O(n) becomes O(1) with parallelism 

• Merge sorts are Merge Sorts 

– O(n log n) 

• Reduces are linear  

– O(n) 

Where’s The Hype? 



• Some things are essentially only Maps 
– Identity reduce 

– Massively parallel 

– No bottleneck  

• Examples: 
– Filter to retain or exclude only certain patterns 

– Reduce data size by random sampling 

– Convert format, e.g. bold to italics 

– Flag bad data, e.g. negative, out of range, etc.  

 

“Embarrassingly Parallel” 
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• Map-Reduce is, in many ways, a distributed sorting 
engine that can some useful work along the way 

– The merge sort and reduce perform the sort 

• We can leverage this if we actually want to sort 

– Identity map 

– Identity reduce 

• One possibly trick: Partition by range 

– Simplifies merge.  

Sorting 



• Common index from key to location, e.g. word to 
<fileName:line#> 

• Map emits key, e.g. <word, fileName:line#> 

• Reduce produces <key, list<metadata>>, e.g. <word, 
list<fileName:line#>> 

Inverted Indexes 



• Where operation is both commutative and associative 

• Map does local computation 

• Reduce forms global computation 

• Examples: Min, max, count, sum (What about average?) 

Simple Statistics 



• Divide into different intervals.  

• Maps compute the count per interval. 

• Reduce will compute the per interval. 

• Note power is in map: Ability to classify in parallel 

Histograms 



• Filter: result = SELECT c1, c2, c3, c4 FROM source WHERE conditions 

– Implement in Map 

• Aggregation: SELECT sum(c3) as s1, avg(c4) as s2 ... FROM result GROUP 
BY c1, c2 HAVING conditions 

– Implement in Reduce 

 

SELECT 



Simple Join 



• The next few slides are from me, rather than 
the cited source for the rest of the 
presentation.  

Kesden’s Additional Slides 



• Map records to common Format 

• Identity reduce  

• Identity Map 

• Reduce to form cross-product 

• Filter to get results 

Normalize Format For Join 



• Form Graph as Adjacency List 
– Map: <Node, <Node, Distance>> for each adjacency 
– Reduce:<Node, Shortest<Node, Distance>> 

 
• Work from each node in parallel 
• Map 

– Node n as a key and  (D, points-to) as its value 
• D is the distance form the start 
• Points-to is a list of Nodes reachable from n, initially direct 

adjacencies 
• Emits all points reachable from n via each node in points-to 

• Reduce 
– Emits one Node n for each key, the one with the shortest D 
 

• Repeat Map and Reduce phases until no shorter distances found 
(nothing learned, nothing can be learned, convergance) 

 

 
 

 
 

Shortest Path 


