
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html

Today’s presentation is largely stolen from Ricky Ho’s Blog posting
(But, any mistakes are assuredly mine!):

Sunday, August 29, 2010

Designing algorithms for Map Reduce

15-440/640 October 29, 2013 (Gregory Kesden, Presenting)

http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html
http://horicky.blogspot.com/2010/08/designing-algorithmis-for-map-reduce.html

Map-Reduce Overview

• Parallelism is (mostly) in the maps, which are
independent (unsynchronized).

– O(n) becomes O(1) with parallelism

• Merge sorts are Merge Sorts

– O(n log n)

• Reduces are linear

– O(n)

Where’s The Hype?

• Some things are essentially only Maps
– Identity reduce

– Massively parallel

– No bottleneck

• Examples:
– Filter to retain or exclude only certain patterns

– Reduce data size by random sampling

– Convert format, e.g. bold to italics

– Flag bad data, e.g. negative, out of range, etc.

“Embarrassingly Parallel”

“Embarrassingly Parallel”

Map

Map

Map

Map

Split

Split

Split

Split

Part

Part

Part

Part

IdRed File1

File2

File…

Filen

IdRed

IdRed

IdRed

DFS DFS
FS @Map FS@Reduce

Part

Part

Part

Part

RPC/Download

• Map-Reduce is, in many ways, a distributed sorting
engine that can some useful work along the way

– The merge sort and reduce perform the sort

• We can leverage this if we actually want to sort

– Identity map

– Identity reduce

• One possibly trick: Partition by range

– Simplifies merge.

Sorting

• Common index from key to location, e.g. word to
<fileName:line#>

• Map emits key, e.g. <word, fileName:line#>

• Reduce produces <key, list<metadata>>, e.g. <word,
list<fileName:line#>>

Inverted Indexes

• Where operation is both commutative and associative

• Map does local computation

• Reduce forms global computation

• Examples: Min, max, count, sum (What about average?)

Simple Statistics

• Divide into different intervals.

• Maps compute the count per interval.

• Reduce will compute the per interval.

• Note power is in map: Ability to classify in parallel

Histograms

• Filter: result = SELECT c1, c2, c3, c4 FROM source WHERE conditions

– Implement in Map

• Aggregation: SELECT sum(c3) as s1, avg(c4) as s2 ... FROM result GROUP
BY c1, c2 HAVING conditions

– Implement in Reduce

SELECT

Simple Join

• The next few slides are from me, rather than
the cited source for the rest of the
presentation.

Kesden’s Additional Slides

• Map records to common Format

• Identity reduce

• Identity Map

• Reduce to form cross-product

• Filter to get results

Normalize Format For Join

• Form Graph as Adjacency List
– Map: <Node, <Node, Distance>> for each adjacency
– Reduce:<Node, Shortest<Node, Distance>>

• Work from each node in parallel
• Map

– Node n as a key and (D, points-to) as its value
• D is the distance form the start
• Points-to is a list of Nodes reachable from n, initially direct

adjacencies
• Emits all points reachable from n via each node in points-to

• Reduce
– Emits one Node n for each key, the one with the shortest D

• Repeat Map and Reduce phases until no shorter distances found
(nothing learned, nothing can be learned, convergance)

Shortest Path

