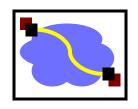


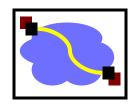
15-640/440: Distributed Systems

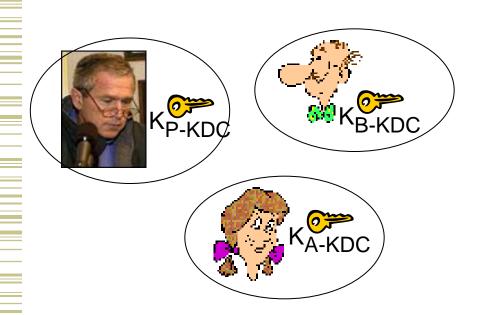
Lecture 23: Key Distribution and Management

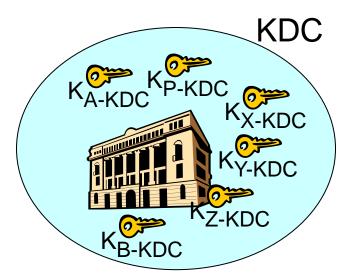

Thanks to the many, many people who have contributed various slides to this deck over the years.

Key Distribution

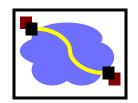
- Have network with n entities
- Add one more
 - Must generate n new keys
 - Each other entity must securely get its new key
 - Big headache managing n² keys!
- One solution: use a central keyserver
 - Needs n secret keys between entities and keyserver
 - Generates session keys as needed
 - Downsides
 - Only scales to single organization level
 - Single point of failure


Symmetric Key Distribution

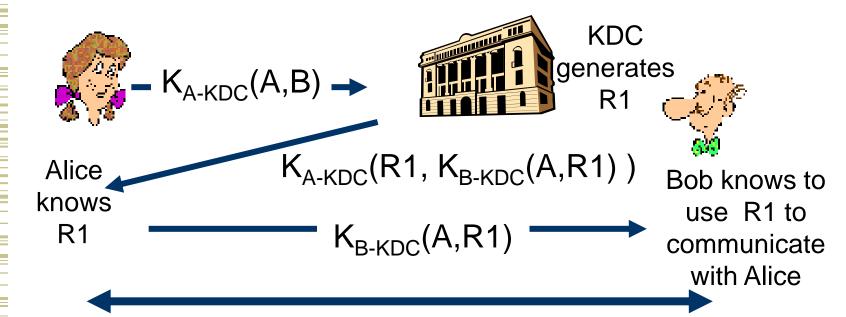

How does Andrew do this?


Andrew Uses Kerberos, which relies on a Key Distribution Center (KDC) to establish shared symmetric keys.

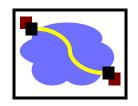
Key Distribution Center (KDC)



- Alice, Bob need shared <u>symmetric key</u>.
- KDC: server shares different secret key with each registered user (many users)
- Alice, Bob know own symmetric keys, K_{A-KDC} K_{B-KDC}, for communicating with KDC.

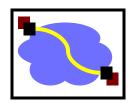


Key Distribution Center (KDC)

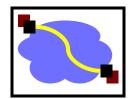


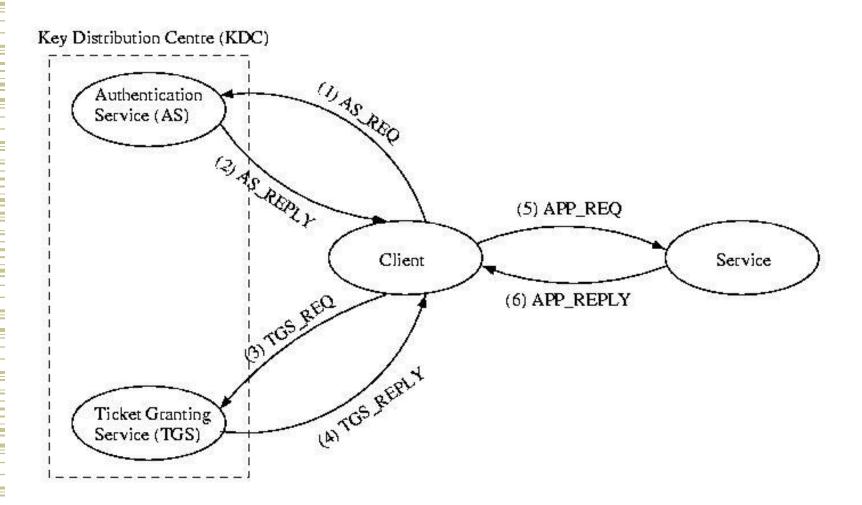
Q: How does KDC allow Bob, Alice to determine shared symmetric secret key to communicate with each other?

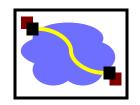
Alice and Bob communicate: using R1 as session key for shared symmetric encryption


How Useful is a KDC?

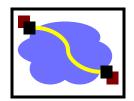
- Must always be online to support secure communication
- KDC can expose our session keys to others!
- Centralized trust and point of failure.

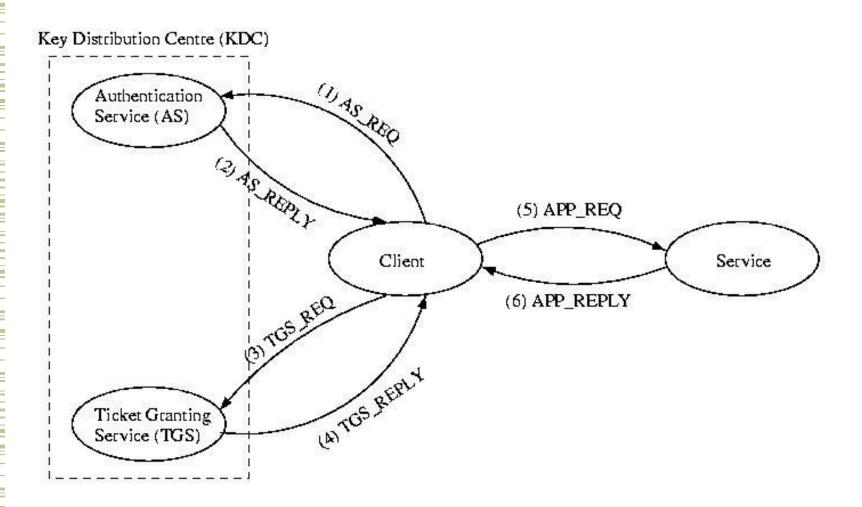

In practice, the KDC model is mostly used within single organizations (e.g. Kerberos) but not more widely.

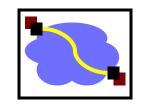

Kerberos


- Trivia
 - Developed in 80's by MIT's Project Athena
 - Used on all Andrew machines
 - Mythic three-headed dog guarding the entrance to Hades
- Uses DES, 3DES
- Key Distribution Center (KDC)
 - Central keyserver for a Kerberos domain
 - Authentication Service (AS)
 - Database of all master keys for the domain
 - Users' master keys are derived from their passwords
 - Generates ticket-granting tickets (TGTs)
 - Ticket Granting Service (TGS)
 - Generates tickets for communication between principals
 - "slaves" (read only mirrors) add reliability
 - "cross-realm" keys obtain tickets in others Kerberos domains

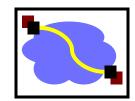
Kerberos Authentication Steps

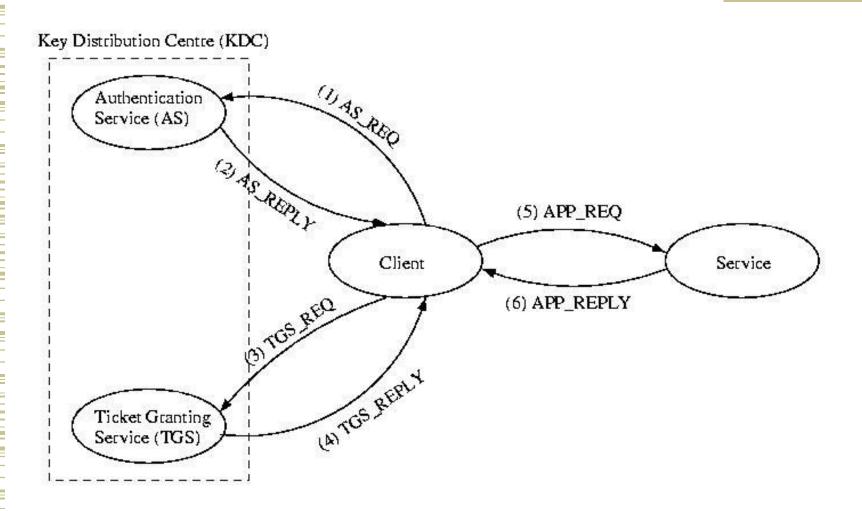


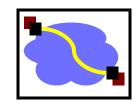

(1) AS_REQUEST


- The first step in accessing a service that requires Kerberos authentication is to obtain a *ticket-granting ticket*.
- To do this, the client sends a <u>plain-text</u> message to the AS:

Kerberos Authentication Steps

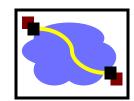


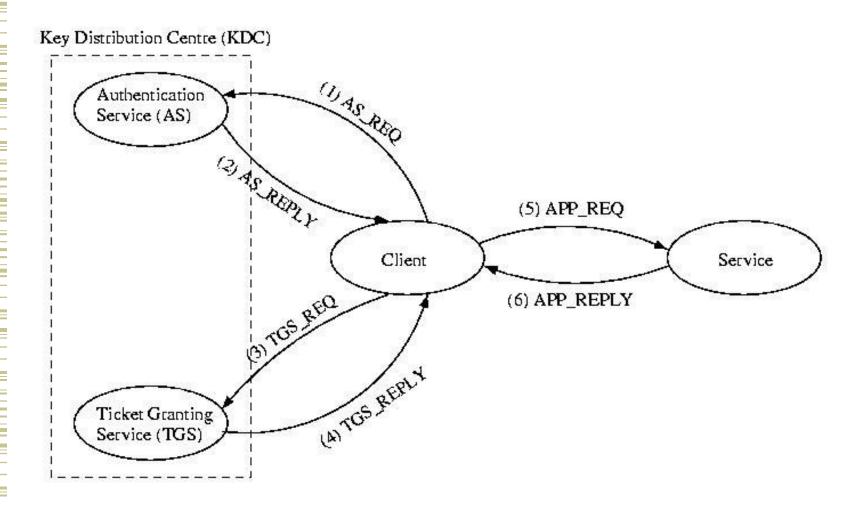

(2) AS_REPLY


- <{K_{c,TGS}, none1}K_c, {ticket_{c,tgs}}K_{TGS}>
- Notice the reply contains the following:
 - The nonce, to prevent replays
 - The new session key
 - A ticket that the client can't read or alter
- A ticket:
 - ticket_{x,y} = {x, y, beginning valid time, expiration time, $K_{x,y}$ }

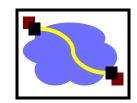
Kerberos Authentication Steps

(3) TGS_REQUEST

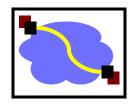



 The TGS request asks the TGS for a ticket to communicate with a a particular service.

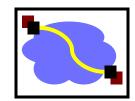
<{auth_c} _{Kc. TGS}, {ticket_c, TGS}K_{TGS}, service, nonce2>

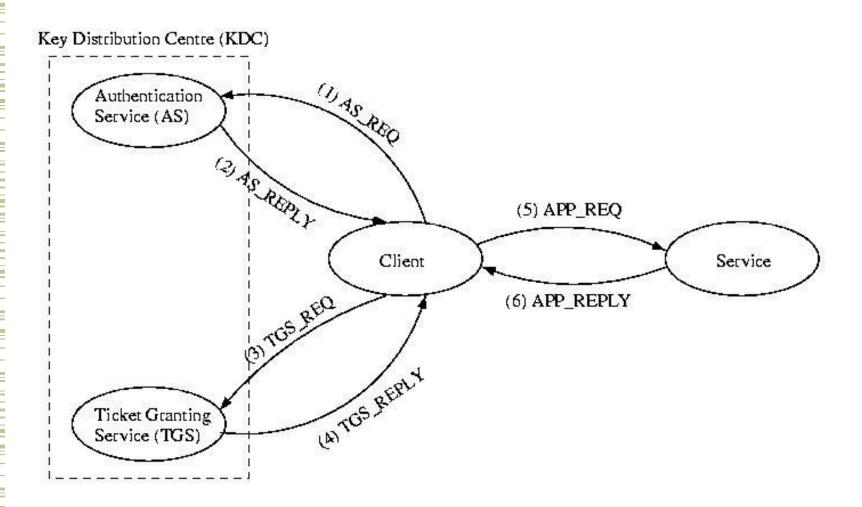

 <{auth_c} is known as an *authenticator* it contains the name of the client and a timestamp for freshness

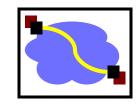
Kerberos Authentication Steps



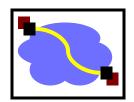
(4) TGS_REPLY


- <{K_{c,service}, nonce2}K_{c,TGS}, {ticket_{c,service}}K_{service} >
- Notice again that the client can't read or alter the ticket
- Notice again the use of the session key and nonce between the client and the TGS


(5) APP_REPLY

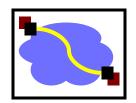

- <{auth_c}K_{c,service}, {ticket_{c,service}}K_{service}, request, nonce3>
- Notice again the use of the session key as well as the protected ticket.

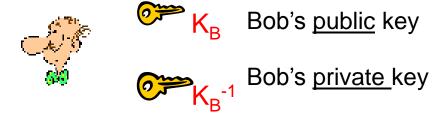
Kerberos Authentication Steps



(6) APP_REPLY

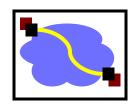
- <{nonce3}K_{c,service}, response>
- Because of the use of the encrypted nonce, the client is assured the reply came form the application, not an imposter.


Using Kerberos


- kinit
 - Get your TGT
 - Creates file, usually stored in /tmp
- klist
 - View your current Kerberos tickets

- kdestory
 - End session, destroy all tickets
- kpasswd
 - Changes your master key stored by the AS
- "Kerberized" applications
 - kftp, ktelnet, ssh, zephyr, etc
 - afslog uses Kerberos tickets to get AFS token

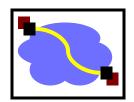
Asymmetric Key Crypto:

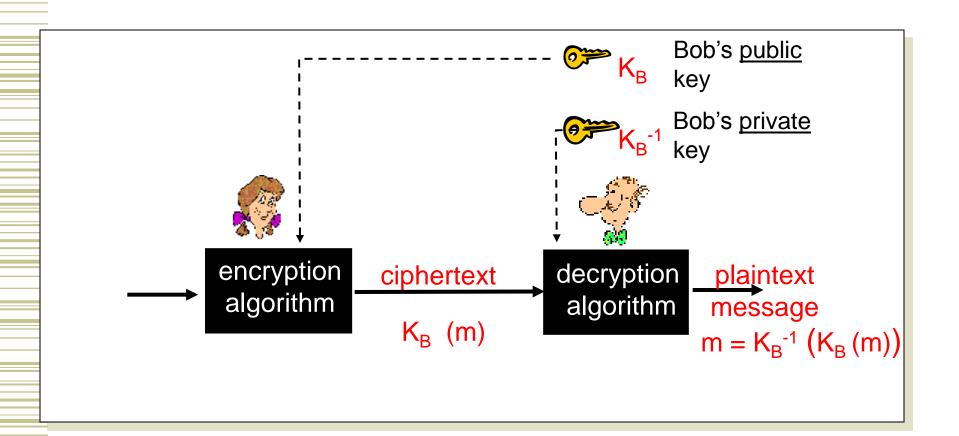

Instead of shared keys, each person has a "key pair"

The keys are inverses, so:

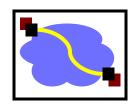
$$K_B^{-1} (K_B (m)) = m$$

Asymmetric Key Crypto:



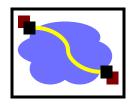

 It is believed to be computationally unfeasible to derive K_B⁻¹ from K_B or to find any way to get M from K_B(M) other than using K_B⁻¹.

=> K_B can safely be made public.


Note: We will not detail the computation that $K_B(m)$ entails, but rather treat these functions as black boxes with the desired properties.

Asymmetric Key: Confidentiality

Asymmetric Key: Sign & Verify

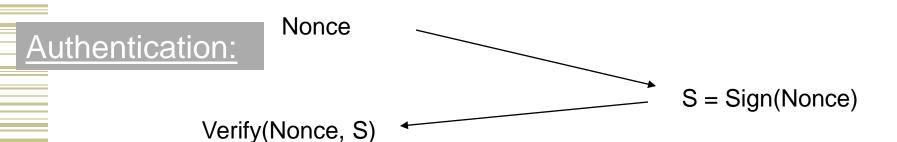


 If we are given a message M, and a value S such that K_B(S) = M, what can we conclude?

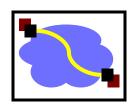
The message must be from Bob, because it must be the case that $S = K_B^{-1}(M)$, and only Bob has K_B^{-1} !

- This gives us two primitives:
 - Sign (M) = $K_B^{-1}(M)$ = Signature S
 - Verify $(S, M) = test(K_B(S) == M)$

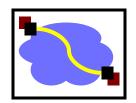
Asymmetric Key: Integrity & Authentication



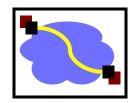
 We can use Sign() and Verify() in a similar manner as our HMAC in symmetric schemes.


Integrity:

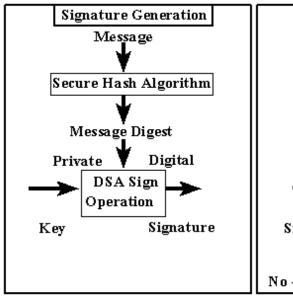
Receiver must only check Verify(M, S)

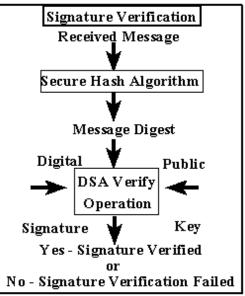

Asymmetric Key Review:

- Confidentiality: Encrypt with Public Key of Receiver
- Integrity: Sign message with private key of the sender
- Authentication: Entity being authenticated signs a nonce with private key, signature is then verified with the public key

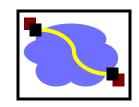

But, these operations are computationally expensive*

Cryptographic Hash Functions

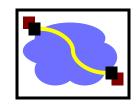



- Given arbitrary length message m, compute constant length digest h(m)
- Desirable properties
 - h(m) easy to compute given m
 - Preimage resistant
 - 2nd preimage resistant
 - Collision resistant
- Crucial point: These are not inverted, they are recomputed
- Example use: file distribution (ur well aware of that!)
- Common algorithms: MD5, SHA

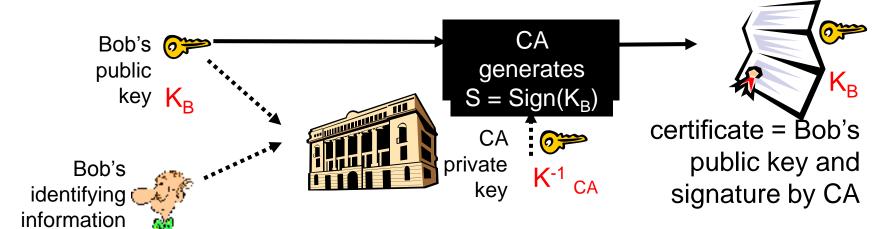
Digital Signatures



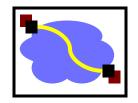
- Alice wants to convince others that she wrote message m
 - Computes digest d = h(m) with secure hash
 - Send <m,d>
- Digital Signature Standard (DSS)

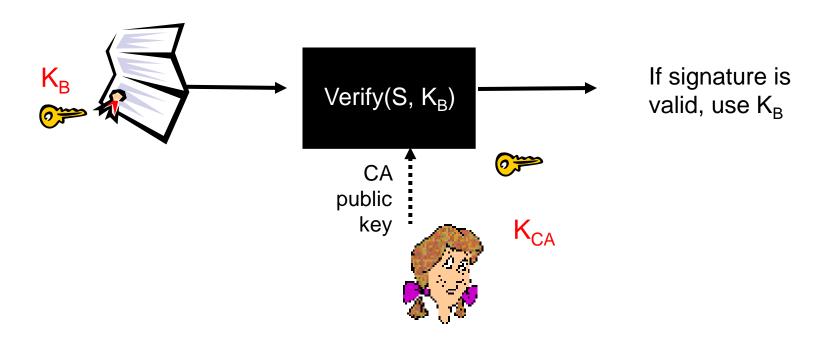


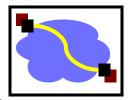
The Dreaded PKI

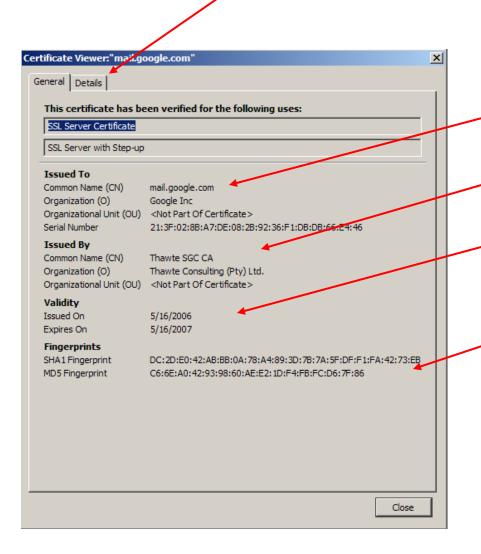


- Definition:
 - Public Key Infrastructure (PKI)
- 1) A system in which "roots of trust" authoritatively bind public keys to real-world identities
- A significant stumbling block in deploying many "next generation" secure Internet protocol or applications.

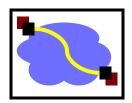

Certification Authorities


- Certification authority (CA): binds public key to particular entity, E.
- An entity E registers its public key with CA.
 - E provides "proof of identity" to CA.
 - CA creates certificate binding E to its public key.
 - Certificate contains E's public key AND the CA's signature of E's public key.


Certification Authorities


- When Alice wants Bob's public key:
 - Gets Bob's certificate (Bob or elsewhere).
 - Use CA's public key to verify the signature within Bob's certificate, then accepts public key

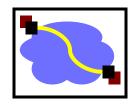
Certificate Contents



info algorithm and key value itself (not shown)

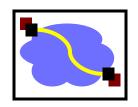
- Cert owner
- Cert issuer
- Valid dates
- Fingerprint of signature

Pretty Good Privacy (PGP)

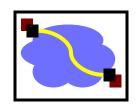

History

- Written in early 1990s by Phil Zimmermann
- Primary motivation is email security
- Controversial for a while because it was too strong
 - Distributed from Europe
- Now the OpenPGP protocol is an IETF standard (RFC 2440)
- Many implementations, including the GNU Privacy Guard (GPG)

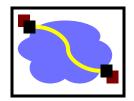
Uses

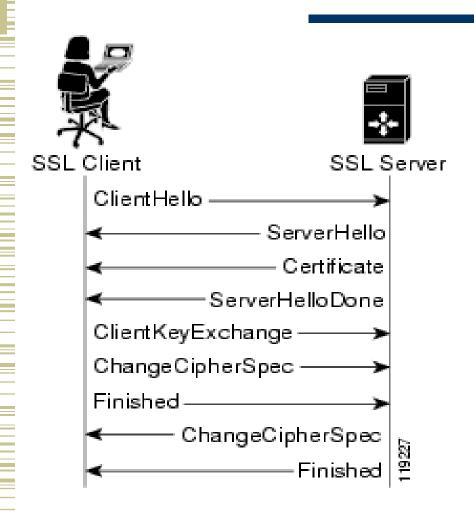

- Message integrity and source authentication
 - Makes message digest, signs with public key cryptosystem
 - Webs of trust
- Message body encryption
 - Private key encryption for speed
 - Public key to encrypt the message's private key

Secure Shell (SSH)


- Negotiates use of many different algorithms
- Encryption
- Server-to-client authentication
 - Protects against man-in-the-middle
 - Uses public key cryptosystems
 - Keys distributed informally
 - kept in ~/.ssh/known_hosts
 - Signatures not used for trust relations
- Client-to-server authentication
 - Can use many different methods
 - Password hash
 - Public key
 - Kerberos tickets

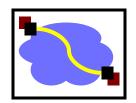
SSL/TLS


- History
 - Standard libraries and protocols for encryption and authentication
 - SSL originally developed by Netscape
 - SSL v3 draft released in 1996
 - TLS formalized in RFC2246 (1999)
- Uses public key encryption
- Uses
 - HTTPS, IMAP, SMTP, etc

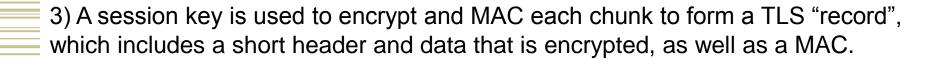

Transport Layer Security (TLS) aka Secure Socket Layer (SSL)

- Used for protocols like HTTPS
- Special TLS socket layer between application and TCP (small changes to application).
- Handles confidentiality, integrity, and authentication.
- Uses "hybrid" cryptography.

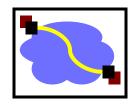
Setup Channel with TLS "Handshake"



Handshake Steps:


- 1) Clients and servers negotiate exact cryptographic protocols
- Client's validate public key certificate with CA public key.
- Client encrypt secret random value with servers key, and send it as a challenge.
- 4) Server decrypts, proving it has the corresponding private key.
- 5) This value is used to derive symmetric session keys for encryption & MACs.

How TLS Handles Data


1) Data arrives as a stream from the application via the TLS Socket

2) The data is segmented by TLS into chunks

4) Records form a byte stream that is fed to a TCP socket for transmission.

Works Cited/Resources

- http://www.psc.edu/~jheffner/talks/sec_lecture.pdf
- http://en.wikipedia.org/wiki/One-time_pad
- http://www.iusmentis.com/technology/encryption/des/
- http://en.wikipedia.org/wiki/3DES
- http://en.wikipedia.org/wiki/AES
- http://en.wikipedia.org/wiki/MD5Textbook: 8.1 8.3
- Wikipedia for overview of Symmetric/Asymmetric primitives and Hash functions.
- OpenSSL (<u>www.openssl.org</u>): top-rate open source code for SSL and primitive functions.
- "Handbook of Applied Cryptography" available free online: www.cacr.math.uwaterloo.ca/hac/