“ 15-640/440: Distributed Systems

Lecture 23: Key Distribution and Management

Thanks to the many, many people who have contributed various
slides to this deck over the years.

Key Distribution “

« Have network with n entities

* Add one more
« Must generate n new keys
« Each other entity must securely get its new key
 Big headache managing n? keys!

* One solution: use a central keyserver
* Needs n secret keys between entities and keyserver
« Generates session keys as needed

* Downsides
* Only scales to single organization level
 Single point of failure

Symmetric Key Distribution i‘,

e How does Andrew do this?

Andrew Uses Kerberos, which relies on a
Key Distribution Center (KDC) to establish
shared symmetric keys.

Key Distribution Center (KDC) i‘.

* Alice, Bob need shared symmetric key.

« KDC: server shares different secret key with each
registered user (many users)

 Alice, Bob know own symmetric keys, K, «pc Kgkpe » fOr
communicating with KDC.

Key Distribution Center (KDC) i‘.

Q: How does KDC allow Bob, Alice to determine shared
symmetric secret key to communicate with each other?

KDC

..‘;_"- — KA-KDC(A’B) ->

_ sl
Iy | | = '::::.I-:-I’l;:"
Alice KA-KDC(R]-’ KB-KDC(A’Rl)) Bob knows to

use R1to

with Alice
ﬁ

Alice and Bob communicate: using R1 as
session key for shared symmetric encryption

How Useful Is a KDC? “

« Must always be online to support secure
communication

« KDC can expose our session keys to others!
« Centralized trust and point of failure.

In practice, the KDC model is mostly used within
single organizations (e.g. Kerberos) but not more
widely.

Kerberos “

« Trivia
* Developed in 80’s by MIT’s Project Athena
« Used on all Andrew machines
« Mythic three-headed dog guarding the entrance to Hades

e Uses DES, 3DES

« Key Distribution Center (KDC)
« Central keyserver for a Kerberos domain
 Authentication Service (AS)
- Database of all master keys for the domain
« Users’ master keys are derived from their passwords
« Generates ticket-granting tickets (TGTS)

« Ticket Granting Service (TGS)
« Generates tickets for communication between principals

« “slaves” (read only mirrors) add reliability
 “cross-realm” keys obtain tickets in others Kerberos domains

Kerberos Authentication Steps

Key Distribution Centre (KDC)

(1) AS REQUEST i‘.

* The first step in accessing a service that requires
Kerberos authentication is to obtain a ticket-
granting ticket.

« To do this, the client sends a plain-text message
to the AS:

« <client id, KDC id, requested ticket expiration, noncel>

Kerberos Authentication Steps

Key Distribution Centre (KDC)

10

(2) AS REPLY

° <{KC,TGS’ nonel}KC! {tiCketC,th}KTGS>

* Notice the reply contains the following:
* The nonce, to prevent replays
* The new session key
A ticket that the client can’t read or alter

e A ticket:

* ticket,, = {X, y, beginning valid time, expiration time, K, }

11

Kerberos Authentication Steps

Key Distribution Centre (KDC)

12

(3) TGS_REQUEST i‘.

 The TGS request asks the TGS for a ticket to
communicate with a a particular service.

« <{auth.} <. TGS {ticket,, TGS}K,ss, Service, nonce2>

« <{auth.} is known as an authenticator it contains the name
of the client and a timestamp for freshness

13

Kerberos Authentication Steps

Key Distribution Centre (KDC)

14

(4) TGS REPLY Y

° <{Kc,service’ nonceZ}K c, TGS {UCketc, service }Kservice >

* Notice again that the client can’t read or alter the
ticket

* Notice again the use of the session key and
nonce between the client and the TGS

15

(5) APP_REPLY i‘,

« <{auth K , {ticket; cervicetKsenvices r€qUESt, Nnonce3>

c,service

* Notice again the use of the session key as well as
the protected ticket.

16

Kerberos Authentication Steps

Key Distribution Centre (KDC)

17

(6) APP_REPLY i‘,

» <{nonce3}K, cenices F€SPONSE>

« Because of the use of the encrypted nonce, the
client is assured the reply came form the
application, not an imposter.

18

Using Kerberos

e Kinit

« Getyour TGT

» Creates file, usually stored in /tmp
« Klist

* View your current Kerberos tickets

: unix4l:~ebardsle> klist
i Credentials cache: FILE:/ticket/krb5cc 61189 9FTING6
Principal: ebardsle@ANDREW.CMU.EDU
| Issued Expires Principal
| Apr 18 19:40:50 Apr 19 20:40:49 krbtgt/ANDREW.CMU.EDURANDREW.CMU.EDU

i\ Apr 18 19:40:50 Apr 19 20:40:49 afs@ANDREW.CMU.EDU
' Apr 18 19:40:51 Apr 19 20:40:49 imap/cyrus.andrew.cmu.edu@ANDREW.CMU.EDU

. kdestory
« End session, destroy all tickets
* Kkpasswd
« Changes your master key stored by the AS
« “Kerberized” applications
» kftp, ktelnet, ssh, zephyr, etc
« afslog uses Kerberos tickets to get AFS token

19

Asymmetric Key Crypto: i‘,

 |Instead of shared keys, each person has a “key
pair’
am. @K, Bob's public key

] 'S pri
£ @_?KB_ , Bob’s private key

* The keys are inverses, So: Kgt (Kg (M) = m

20

Asymmetric Key Crypto: “

* |tis believed to be computationally unfeasible to
derive K;t from Kj or to find any way to get M
from Kg(M) other than using Kg™ .

=> Kz can safely be made public.

Note: We will not detail the computation that Kg(m) entails, but rather treat
these functions as black boxes with the desired properties.

21

Asymmetric Key: Confidentiality

«

ﬁ

5 |

ChleRYaileil ciphertext

algorithm

Kg (M)

Bob’s public
B key

@?KB_ . Eob S private
€y

1.‘-." "I
aE
s

1
|
1
I
|
1
|
v

decryption EESIEVgIE
cllofolfiulgll Mmessage

m = Kg* (Kg (M))

22

Asymmetric Key: Sign & Verify i‘,

 If we are given a message M, and a value S such
that Kg(S) = M, what can we conclude?

* The message must be from Bob, because it must be the
case that S = K;1(M), and only Bob has Kg!

* This gives us two primitives:
* Sign (M) = Kg3(M) = Signature S
* Verify (S, M) =test(Kz(S) ==M)

23

Asymmetric Key: Integrity & Authentication

* We can use Sign() and Verify() in a similar

«

manner as our HMAC in symmetric schemes.

s - s NS

Receiver must only check Verify(M, S)

Nonce \

Verify(Nonce, S) —

S = Sign(Nonce)

24

Asymmetric Key Review: “

« Confidentiality: Encrypt with Public Key of
Receilver

 Integrity: Sign message with private key of the
sender

« Authentication: Entity being authenticated signs a
nonce with private key, signature is then verified
with the public key

But, these operations are computationally expensive*

25

Cryptographic Hash Functions “

* Given arbitrary length message m, compute constant
length digest h(m)
« Desirable properties
* h(m) easy to compute given m
* Preimage resistant
« 2"d preimage resistant
» Collision resistant

* Crucial point : These are not inverted, they are
recomputed

« Example use: file distribution (ur well aware of that!)
« Common algorithms: MD5, SHA

26

Digital Signatures

«

 Alice wants to convince others that she wrote message m
« Computes digest d = h(m) with secure hash

e Send <m,d>

 Digital Signature Standard (DSS)

| Signature Generation |

Message

|S ecure Hash Mgurithm|

Message Digest
Private * Digital

DS A Ki
i -lg;lfl -
O peration

Key Signature

Iﬂg;nature Verification I
Feceived Message

Fecure Hash Algorithm |

Message Digest

Digital * Public
— DSA Verify e

Operation

Signature Key

Y es - Signature Verified
or
No - Signature Verification Failed

27

he Dreaded PKI “

* Definition:
Public Key Infrastructure (PKI)

1) A system in which “roots of trust” authoritatively
bind public keys to real-world identities

2) A significant stumbling block in deploying many
“next generation” secure Internet protocol or
applications.

28

Certification Authorities “

« Certification authority (CA): binds public key to
particular entity, E.

* An entity E registers its public key with CA.
« E provides “proof of identity” to CA.
« CA creates certificate binding E to its public key.

 Certificate contains E’s public key AND the CA'’s signature of

E’s public key.

Bob's @& CA e

public SEREIEIES K
key Kg B

certificate = Bob’s

Bob’s .= public key and

identifying (/8 ' signature by CA
information g

29

Certification Authorities

When Alice wants Bob’s public key:
« Gets Bob's certificate (Bob or elsewhere).

« Use CA'’s public key to verify the signature within
Bob’s certificate, then accepts public key

y If signature is
Verify(S, Kg) valid, use Kg

30

Certificate Contents

* Info algorithm

General | Details I

This certificate has been verified for the following uses:

Certificate Viewer:" maZ.google.com

NGO

I S5L Server with Step-up

Issued To

Comman Mame (CM)
Organization {O)
Organizational Unit (OU)
Serial Number

Issued By

Comman Mame (CN)
Organization {0
Organizational Unit (0L}
Validity

Issued On

Expires On
Fingerprints

SHA1 Fingerprint

MD5 Fingerprint

mail.google.com /
Google Inc

<MNot Part Of Certificate >
21:3F:02:86: A7:DE:08: 2B:92: 36:F1:DB:DE;

Thawte SGC CA
Thawte Consulting (Pty) Ltd.
<MNot Part Of Certificate >

5/16/2008
5/16/2007

DC:2D:EU:42:AB:E!B:UA:?B:A4:89:33:?‘B:?A:5F:DF:F1:FA:42:?3:I%/
CE:6E:AD:42:93:98:60:AE:E2: 1D:F4:FB:FC:D6: 7F:86

=

Close

—
|

/

_— ¢
 Certissuer
* Valid dates

Cert owner

* Fingerprint

of signature

31

Pretty Good Privacy (PGP) i‘.

e History
« Written in early 1990s by Phil Zimmermann
* Primary motivation is email security

« Controversial for a while because it was too strong
 Distributed from Europe

* Now the OpenPGP protocol is an IETF standard (RFC 2440)
« Many implementations, including the GNU Privacy Guard (GPG)

e Uses

* Message integrity and source authentication

« Makes message digest, signs with public key cryptosystem
* Webs of trust

« Message body encryption
 Private key encryption for speed
» Public key to encrypt the message’s private key

32

Secure Shell (SSH)

Negotiates use of many different algorithms
Encryption

Server-to-client authentication
* Protects against man-in-the-middle
« Uses public key cryptosystems

« Keys distributed informally
« kept in ~/.ssh/known_hosts

 Signatures not used for trust relations

Client-to-server authentication
« Can use many different methods
« Password hash
* Public key
« Kerberos tickets

33

SSL/TLS i‘

* History

 Standard libraries and protocols for encryption and
authentication

« SSL originally developed by Netscape
« SSL v3 draft released in 1996

« TLS formalized in RFC2246 (1999)
« Uses public key encryption

e Uses
« HTTPS, IMAP, SMTP, etc

34

Transport Layer Security (TLS)

aka Secure Socket Layer (SSL) t"

» Used for protocols like HTTPS

« Special TLS socket layer between application and TCP
(small changes to application).

« Handles confidentiality, integrity, and authentication.

« Uses “hybrid” cryptography.

35

Setup Channel with

LS “Handshake”

«

Handshake Steps:

| Y=}
g8
SSL Client SSL Server 2)
ClientHelk >
~ serverHello 3)
-« Certificate
- serverHelloDone
ClentKeyExchange ———— 4)
ChangeCipherSpec ———»
Finished > 5)
«— ChangeCipherSpec 5
- Finished |

Clients and servers negotiate
exact cryptographic protocols

Client’s validate public key
certificate with CA public key.

Client encrypt secret random
value with servers key, and send
it as a challenge.

Server decrypts, proving it has
the corresponding private key.

This value is used to derive
symmetric session keys for
encryption & MACs.

36

How TLS Handles Data l‘,

1) Data arrives as a stream

2) The data is segmented by TLS into chunks

3) A session key is used to encrypt and MAC each chunk to form a TLS “record”,
which includes a short header and data that is encrypted, as well as a MAC.

4) Records form a byte stream that is fed to a TCP socket for transmission.

37

Works Cited/Resources “

« http://www.psc.edu/~|heffner/talks/sec lecture.pdf

« http://en.wikipedia.org/wiki/One-time pad

« http://www.ilusmentis.com/technology/encryption/des/
« http://en.wikipedia.org/wiki/3DES

« http://en.wikipedia.org/wiki/AES

« http://en.wikipedia.org/wiki/MD5Textbook: 8.1 — 8.3

« Wikipedia for overview of Symmetric/Asymmetric primitives and
Hash functions.

* OpenSSL (www.openssl.org): top-rate open source code for
SSL and primitive functions.

« “Handbook of Applied Cryptography” available free online:
www.cacr.math.uwaterloo.ca/hac/

38

http://www.psc.edu/~jheffner/talks/sec_lecture.pdf
http://en.wikipedia.org/wiki/One-time_pad
http://en.wikipedia.org/wiki/One-time_pad
http://en.wikipedia.org/wiki/One-time_pad
http://www.iusmentis.com/technology/encryption/des/
http://en.wikipedia.org/wiki/3DES
http://en.wikipedia.org/wiki/AES
http://en.wikipedia.org/wiki/MD5
http://www.openssl.org/

