
1

Distributed Hash Tables

15-415 (Fall 2010)

Adapted from a presentation by Jeff Pang in 15-744, Spring 2007

DHTs

● Like it sounds – a distributed hash table

● Put(Key, Value)

● Get(Key) -> Value

Interface vs. Implementation

● Put/Get is an abstract interface

– Very convenient to program to

– Doesn't require a “DHT” in today's sense of the
world.

– e.g., Amazon's S3 storage service

● /bucket-name/object-id -> data

● We'll mostly focus on the back-end log(n)
lookup systems like Chord

– But researchers have proposed alternate
architectures that may work better, depending
on assumptions!

DHTs

● Two options:

– lookup(key) -> node ID

– lookup(key) -> data

● When you know the nodeID, you can ask it directly for the
data, but specifying interface as -> data provides more
opportunities for caching and computation at
intermediaries

● Different systems do either. We'll focus on the problem of
locating the node responsible for the data. The solutions
are basically the same.

Algorithmic Requirements

● Every node can find the answer

● Keys are load-balanced among nodes

– Note: We're not talking about popularity of
keys, which may be wildly different.
Addressing this is a further challenge...

● Routing tables must adapt to node failures
and arrivals

● How many hops must lookups take?

– Trade-off possible between state/maint. traffic
and num lookups...

Consistent Hashing

● How can we map a key to a node?

● Consider ordinary hashing

– func(key) % N -> node ID

– What happens if you add/remove a node?

● Consistent hashing:

– Map node IDs to a (large) circular space

– Map keys to same circular space

– Key “belongs” to nearest node

2

15-441 Spring 2004, Jeff Pang 7

DHT: Consistent Hashing

N3
2

N9
0

N10
5

K8
0

K2
0

K
5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

15-441 Spring 2004, Jeff Pang 8

Consistent Hashing

● Very useful algorithmic trick outside of
DHTs, etc.

– Any time you want to not greatly change object
distribution upon bucket arrival/departure

● Detail:

– To have good load balance

– Must represent each bucket by log(N) “virtual”
buckets

15-441 Spring 2004, Jeff Pang 9

DHT: Chord Basic Lookup

N3
2

N9
0

N10
5

N6
0

N1
0

N12
0

K8
0

“Where is key 80?”

“N90 has K80”

15-441 Spring 2004, Jeff Pang 10

DHT: Chord “Finger Table”

N8
0

1/
2

1/
4

1/
8

1/1
61/3
21/6
41/12
8

• Entry i in the finger table of node n is the first node that succeeds or equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

15-441 Spring 2004, Jeff Pang 11

DHT: Chord Join

• Assume an identifier space [0..8]

• Node n1 joins
0

1

2

3
4

5

6

7

i id+2
i

succ

0 2 1
1 3 1

2 5 1

Succ. Table

15-441 Spring 2004, Jeff Pang 12

DHT: Chord Join

• Node n2 joins
0

1

2

3
4

5

6

7

i id+2
i

succ

0 2 2
1 3 1

2 5 1

Succ. Table

i id+2
i

succ

0 3 1
1 4 1

2 6 1

Succ. Table

3

15-441 Spring 2004, Jeff Pang 13

DHT: Chord Join

• Nodes n0, n6 join
0

1

2

3
4

5

6

7

i id+2
i

succ

0 2 2
1 3 6

2 5 6

Succ. Table

i id+2
i

succ

0 3 6
1 4 6

2 6 6

Succ. Table

i id+2
i

succ

0 1 1
1 2 2

2 4 0

Succ. Table

i id+2
i

succ

0 7 0
1 0 0

2 2 2

Succ. Table

15-441 Spring 2004, Jeff Pang 14

DHT: Chord Join

• Nodes:
n1, n2, n0, n6

• Items:
f7, f2

0

1

2

3
4

5

6

7 i id+2
i

succ

0 2 2
1 3 6

2 5 6

Succ. Table

i id+2
i

succ

0 3 6
1 4 6

2 6 6

Succ. Table

i id+2
i

succ

0 1 1
1 2 2

2 4 0

Succ. Table

7

Items

1

Items

i id+2
i

succ

0 7 0
1 0 0

2 2 2

Succ. Table

15-441 Spring 2004, Jeff Pang 15

DHT: Chord Routing

• Upon receiving a query for item id, a node:
• Checks whether stores the item locally
• If not, forwards the query to the largest node in its successor table that does not exceed

0

1

2

3
4

5

6

7 i id+2
i

succ

0 2 2
1 3 6

2 5 6

Succ. Table

i id+2
i

succ

0 3 6
1 4 6

2 6 6

Succ. Table

i id+2
i

succ

0 1 1
1 2 2

2 4 0

Succ. Table

7

Items

1

Items

i id+2
i

succ

0 7 0
1 0 0

2 2 2

Succ. Table

query(7
)

15-441 Spring 2004, Jeff Pang 16

DHT: Chord Summary

• Routing table size?

–Log N fingers

• Routing time?

–Each hop expects to 1/2 the distance to the desired id => expect O(log

LH*: A Distributed Linear Hash
• Just because we spoke about Linear Hashing earlier in the semester during our

discussion of growable hashing schemes…

• It is easy to see that Linear Hashing can be distributed.

• Each of the buckets is a host

• The buckets can even be RAM-only

• A coordinator is invoked by the host of a bucket upon collision

• The coordinator assigns a new host from a pool of available hosts

• It then communicates with the two hosts to coordinate the split

• After the split, the old hosts knows who it split with and can forward
queries

• A retiring host is problematic.

• Coordinator can supply replacement host to accept bucket of storage

• Coordinator needs to inform all hosts that cold have split with the retiring
host over time, so that they can forward

• Alternate approach: If unable to find a host, contact the coordinator to find its replacement

• One extension of Linear Hashing to the distributed
environment is called LH*

Cassandra and HBase
• Cassandra uses a Chord-based ring as its data store

• HBase is built above HDFS, the Hadoop File System.

• Replicas go to (a) local node, (b) local rack, (c) some other
rack, (d) random after that

• NameNode knows the mapping – not a hash

